Home
Class 12
MATHS
If y=ae^(mx)+be^(-mx) then (d^2y)/(dx...

If `y=ae^(mx)+be^(-mx)` then `(d^2y)/(dx^2)` is

A

`-m^(2)y`

B

`-m^(2)y^(2)`

C

my

D

`-my`

Text Solution

AI Generated Solution

The correct Answer is:
To find the second derivative of the function \( y = ae^{mx} + be^{-mx} \), we will follow these steps: ### Step 1: Find the first derivative \( \frac{dy}{dx} \) Given: \[ y = ae^{mx} + be^{-mx} \] To differentiate \( y \) with respect to \( x \): 1. Differentiate \( ae^{mx} \): - The derivative of \( e^{mx} \) is \( e^{mx} \cdot m \) (using the chain rule). - Therefore, \( \frac{d}{dx}(ae^{mx}) = a \cdot m e^{mx} \). 2. Differentiate \( be^{-mx} \): - The derivative of \( e^{-mx} \) is \( e^{-mx} \cdot (-m) \). - Therefore, \( \frac{d}{dx}(be^{-mx}) = -b \cdot m e^{-mx} \). Combining these results: \[ \frac{dy}{dx} = am e^{mx} - bm e^{-mx} \] ### Step 2: Find the second derivative \( \frac{d^2y}{dx^2} \) Now, we differentiate \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = am e^{mx} - bm e^{-mx} \] 1. Differentiate \( am e^{mx} \): - The derivative is \( am \cdot m e^{mx} = am^2 e^{mx} \). 2. Differentiate \( -bm e^{-mx} \): - The derivative is \( -bm \cdot (-m) e^{-mx} = bm^2 e^{-mx} \). Combining these results: \[ \frac{d^2y}{dx^2} = am^2 e^{mx} + bm^2 e^{-mx} \] ### Step 3: Factor out \( m^2 \) We can factor out \( m^2 \) from the expression: \[ \frac{d^2y}{dx^2} = m^2 (a e^{mx} + b e^{-mx}) \] ### Step 4: Substitute back for \( y \) Notice that \( a e^{mx} + b e^{-mx} = y \): \[ \frac{d^2y}{dx^2} = m^2 y \] ### Final Answer Thus, the second derivative is: \[ \frac{d^2y}{dx^2} = m^2 y \] ---
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise Section -B|35 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise Section - C ( More than one options are correct )|5 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise Try youself|16 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J ( Aakash Challengers Questions )|16 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J|12 Videos

Similar Questions

Explore conceptually related problems

If y=ae^(mx)+be^(-mx) , then (d^2y)/dx^2-m^2y is equals to (a). m^2(ae^(mx)-be^(mx)) (b).1 (c).0 (d).None of these

if y=(A+Bx)e^(mx)+(m-1)^-1 e^x then (d^2y)/(dx^2)-2m(dy)/(dx)+m^2y is equal to:

if y=ae^(x)+be^(-3x)+c , then the value of ((d^(3)y)/(dx^(3))+2(d^(2)y)/(dx^(2)))/((dy)/(dx)) is

If y^2=P(x) , then 2d/dx(y^3(d^2y/dx^2))

If x=logp and y=1/p ,then (a) (d^2y)/(dx^2)-2p=0 (b) (d^2y)/(dx^2)+y=0 (c) (d^2y)/(dx^2)+(dy)/(dx)=0 (d) (d^2y)/(dx^2)-(dy)/(dx)=0

Verify that y=ae^(3x)+be^(-x) is a solution of differential equation (d^2y)/(dx^2)-2(dy)/(dx)-3y=0

The condition that the line y=mx+c may be a tangent to (y^(2))/(a^(2))-x^(2)/b^(2)=1 is

y=ae^(mx)+be^(-mx) satisfies which of the following differential equation?

If the line y = mx - (m-1) cuts the circle x^2+y^2=4 at two real and distinct points then total values of m are

Which of the following differential equations has y = x as one of its particular solution? (A) (d^2y)/(dx^2)-x^2(dy)/(dx)+x y=x (B) (d^2y)/(dx^2)+x(dy)/(dx)+x y=x (C) (d^2y)/(dx^2)-x^2(dy)/(dx)+x y=0 (D) (d^2y)/(dx^2)+x(dy)/(dx)+x y=0

AAKASH INSTITUTE ENGLISH-CONTINUITY AND DIFFERENTIABILITY-Assignment ( section -A)
  1. Find (dy)/(dx) if y=log{e^x((x-2)/(x+2))^(3/4)}

    Text Solution

    |

  2. If y=(e^x-e^(-x))/(e^x+e^(-1)),"p r o v et h a t"(dy)/(dx)=1-y^2

    Text Solution

    |

  3. If y=ae^(mx)+be^(-mx) then (d^2y)/(dx^2) is

    Text Solution

    |

  4. If y^(2) = ax^(2) + b , " then " (d^(2)y)/( dx^(2))

    Text Solution

    |

  5. If y=(log x)/(x) then (d^(2)y)/(dx^(2))=

    Text Solution

    |

  6. Differentiate the following w.r.t.x. The differentiation coneffiecient...

    Text Solution

    |

  7. If y=(1+x)(1+x^2)(1+x^4)(1+x^(2n)), then find (dy)/(dx)a tx=0.

    Text Solution

    |

  8. If f(x) = cos x cdot cos 2x cdot cos 4x cdot cos 8x cdot cos 16x," the...

    Text Solution

    |

  9. If y=cos^(-1)(cosx),then (dy)/(dx) at x=(5pi)/4 is equal to (a)1 (b)-...

    Text Solution

    |

  10. If x=e^(y+e^(y+e^(y+...oo))),xgt0, then (dy)/(dx) is equal to

    Text Solution

    |

  11. if x^y . y^x =16 then dy/dx at (2,2) is equal to

    Text Solution

    |

  12. If y = sin x^(@) " and " u = cos x " then " (dy)/(du) is equal to

    Text Solution

    |

  13. Let the function y = f(x) be given by x= t^(5) -5t^(3) -20t +7 ...

    Text Solution

    |

  14. If u=f(x^3),v=g(x^2),f^(prime)(x)=cosx ,a n dg^(prime)(x)=sinx ,t h e ...

    Text Solution

    |

  15. Find the derivative of sec^(-1)((1)/(2x^(2)-1))" w.r.t. "sqrt(1-x^(2))...

    Text Solution

    |

  16. If t(1+x^(2))=x and x^(2)+t^(2)=y then at x = 2, the value of (dy)/(dx...

    Text Solution

    |

  17. If x=tcost ,y=t+sint . Then (d^2 x)/(dy^2)at t=pi/2 is (a)(pi+4)/2...

    Text Solution

    |

  18. if y = sin 2x , " then " (d^(6)y)/(dx^(6)) " at" x = pi/2 is equal t...

    Text Solution

    |

  19. Let f(x)=|[x^3,sinx,cosx],[6,-1, 0],[p, p^2,p^3]|, where p is a cons...

    Text Solution

    |

  20. If x=2a t , y=a t^2 , where a is a constant, then find (d^2y)/(dx^2...

    Text Solution

    |