Home
Class 12
MATHS
if y = sin 2x , " then " (d^(6)y)/(dx^...

if y =` sin 2x , " then " (d^(6)y)/(dx^(6)) " at" x = pi/2` is equal to

A

`-64`

B

0

C

64

D

128

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding \(\frac{d^6y}{dx^6}\) at \(x = \frac{\pi}{2}\) for the function \(y = \sin(2x)\), we will differentiate the function six times and then evaluate the sixth derivative at the specified point. ### Step-by-Step Solution: 1. **Given Function**: \[ y = \sin(2x) \] 2. **First Derivative**: \[ \frac{dy}{dx} = \cos(2x) \cdot \frac{d(2x)}{dx} = 2 \cos(2x) \] 3. **Second Derivative**: \[ \frac{d^2y}{dx^2} = \frac{d}{dx}(2 \cos(2x)) = 2 \cdot (-\sin(2x)) \cdot \frac{d(2x)}{dx} = -4 \sin(2x) \] 4. **Third Derivative**: \[ \frac{d^3y}{dx^3} = \frac{d}{dx}(-4 \sin(2x)) = -4 \cos(2x) \cdot \frac{d(2x)}{dx} = -8 \cos(2x) \] 5. **Fourth Derivative**: \[ \frac{d^4y}{dx^4} = \frac{d}{dx}(-8 \cos(2x)) = -8 \cdot (-\sin(2x)) \cdot \frac{d(2x)}{dx} = 16 \sin(2x) \] 6. **Fifth Derivative**: \[ \frac{d^5y}{dx^5} = \frac{d}{dx}(16 \sin(2x)) = 16 \cos(2x) \cdot \frac{d(2x)}{dx} = 32 \cos(2x) \] 7. **Sixth Derivative**: \[ \frac{d^6y}{dx^6} = \frac{d}{dx}(32 \cos(2x)) = 32 \cdot (-\sin(2x)) \cdot \frac{d(2x)}{dx} = -64 \sin(2x) \] 8. **Evaluate at \(x = \frac{\pi}{2}\)**: \[ \frac{d^6y}{dx^6} \bigg|_{x = \frac{\pi}{2}} = -64 \sin(2 \cdot \frac{\pi}{2}) = -64 \sin(\pi) \] Since \(\sin(\pi) = 0\): \[ \frac{d^6y}{dx^6} \bigg|_{x = \frac{\pi}{2}} = -64 \cdot 0 = 0 \] ### Final Answer: \[ \frac{d^6y}{dx^6} \bigg|_{x = \frac{\pi}{2}} = 0 \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise Section -B|35 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise Section - C ( More than one options are correct )|5 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise Try youself|16 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J ( Aakash Challengers Questions )|16 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J|12 Videos

Similar Questions

Explore conceptually related problems

If y= sin x+cos x then (d^(2)y)/(dx^(2)) is :-

If x=3cos t and y=5sint , where t is a parameter, then 9(d^(2)y)/(dx^(2)) at t=-(pi)/(6) is equal to

If y=sin(log_(e)x) , then x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx) is equal to

If y=5cos x-3sin x ,then (d^(2)y)/(dx^(2)) is equal to (a) -y (b) y (c) 25y (d) 9y

If sqrt(x+y)+sqrt(y-x)=2 , then the value of (d^(2)y)/(dx^(2)) is equal to

If y = tan ^(-1) (sec x + tan x) , " find " (d^(2) y)/( dx^(2)) at x = (pi)/(4)

If y= 2x^6 + sin 3x then dy/dx

If y=(log_(cosx)sinx)(log_(sinx)cosx)+"sin"""^(-1)(2x)/(1+x^(2)) , then (dy)/(dx) at x=(pi)/(2) is equal to

If 2 sin x. cos y=1, then (d ^(2)y)/(dx ^(2)) at ((pi)/(4), (pi)/(4)) is …….

If y = sqrt((cos x - sin x)(sec 2x + 1)(cos x + sin x)) , Then (dy)/(dx) at x = (5 pi)/(6) is :

AAKASH INSTITUTE ENGLISH-CONTINUITY AND DIFFERENTIABILITY-Assignment ( section -A)
  1. If t(1+x^(2))=x and x^(2)+t^(2)=y then at x = 2, the value of (dy)/(dx...

    Text Solution

    |

  2. If x=tcost ,y=t+sint . Then (d^2 x)/(dy^2)at t=pi/2 is (a)(pi+4)/2...

    Text Solution

    |

  3. if y = sin 2x , " then " (d^(6)y)/(dx^(6)) " at" x = pi/2 is equal t...

    Text Solution

    |

  4. Let f(x)=|[x^3,sinx,cosx],[6,-1, 0],[p, p^2,p^3]|, where p is a cons...

    Text Solution

    |

  5. If x=2a t , y=a t^2 , where a is a constant, then find (d^2y)/(dx^2...

    Text Solution

    |

  6. If y = x^(1/x) , the value of (dy)/(dx) at x =e is equal to

    Text Solution

    |

  7. If y = tan^(-1)( sqrt((x+1)/(x-1))) " for " |x| gt 1 " then " (dy)/(d...

    Text Solution

    |

  8. If y="log"(2)"log"(2)(x), then (dy)/(dx) is equal to

    Text Solution

    |

  9. If f'(x)= sqrt(2x^(2)-1) and y=f(x^(2)),then (dy)/(dx) at x = 1 is

    Text Solution

    |

  10. Let the function f(x) be defined as f(x) = {:{((logx-1)/(x-e) , xnee),...

    Text Solution

    |

  11. Rolle's theorem is not applicable to f(x) = |x| in [ -2,2] because

    Text Solution

    |

  12. Lagrange's mean value theorem is not applicable to f(x) in [1,4] where...

    Text Solution

    |

  13. The value of C ( if exists ) in Lagrange's theorem for the function |x...

    Text Solution

    |

  14. If f be a function such that f(9)=9 and f'(9)=3, then lim(xto9)(sqrt(f...

    Text Solution

    |

  15. If f(x) = {{:(1/(1+e^(1//x)), x ne 0),(0,x=0):} then f(x) is

    Text Solution

    |

  16. f(x)=sqrt(1-sqrt(1-x^2) then at x=0 ,value of f(x) is

    Text Solution

    |

  17. Domain of differentiations of the function f(x) = |x -2| cos x is

    Text Solution

    |

  18. Let f(x) = (sin (pi [ x + pi]))/(1+[x]^(2)) where [] denotes the great...

    Text Solution

    |

  19. If f(x)=x^2+(x^2)/(1+x^2)+(x^2)/((1+x^2)^2)+ ....oo term then at x=0,f...

    Text Solution

    |

  20. Let f(x)={(|x+1|)/(tan^(- 1)(x+1)), x!=-1 ,1, x!=-1 Then f(x) is

    Text Solution

    |