Home
Class 12
MATHS
If y = tan^(-1)( sqrt((x+1)/(x-1))) " f...

If ` y = tan^(-1)( sqrt((x+1)/(x-1))) " for " |x| gt 1 " then " (dy)/(dx)` =

A

`(-1)/(2|x|sqrt(x^(2)-1))`

B

`(-1)/(2xsqrt(x^(2)-1))`

C

`1/(2xsqrt(x^(2)-1))`

D

`1/(2xsqrt(x^(2)-1))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative \( \frac{dy}{dx} \) for the function \( y = \tan^{-1}\left(\sqrt{\frac{x+1}{x-1}}\right) \) for \( |x| > 1 \), we can follow these steps: ### Step 1: Rewrite the expression Let \( y = \tan^{-1}\left(\sqrt{\frac{x+1}{x-1}}\right) \). ### Step 2: Use a trigonometric substitution To simplify the expression, we can let \( x = \sec(\theta) \). Then, we have: \[ \sqrt{\frac{x+1}{x-1}} = \sqrt{\frac{\sec(\theta) + 1}{\sec(\theta) - 1}} \] ### Step 3: Simplify the square root Using the identity \( \sec(\theta) = \frac{1}{\cos(\theta)} \): \[ \sqrt{\frac{\sec(\theta) + 1}{\sec(\theta) - 1}} = \sqrt{\frac{\frac{1}{\cos(\theta)} + 1}{\frac{1}{\cos(\theta)} - 1}} = \sqrt{\frac{1 + \cos(\theta)}{1 - \cos(\theta)}} \] ### Step 4: Use trigonometric identities Using the identities \( 1 + \cos(\theta) = 2\cos^2\left(\frac{\theta}{2}\right) \) and \( 1 - \cos(\theta) = 2\sin^2\left(\frac{\theta}{2}\right) \): \[ \sqrt{\frac{1 + \cos(\theta)}{1 - \cos(\theta)}} = \sqrt{\frac{2\cos^2\left(\frac{\theta}{2}\right)}{2\sin^2\left(\frac{\theta}{2}\right)}} = \frac{\cos\left(\frac{\theta}{2}\right)}{\sin\left(\frac{\theta}{2}\right)} = \cot\left(\frac{\theta}{2}\right) \] ### Step 5: Substitute back into \( y \) Now we can rewrite \( y \): \[ y = \tan^{-1}\left(\cot\left(\frac{\theta}{2}\right)\right) = \frac{\pi}{2} - \frac{\theta}{2} \] ### Step 6: Express \( \theta \) in terms of \( x \) Since \( x = \sec(\theta) \), we have \( \theta = \sec^{-1}(x) \). Therefore: \[ y = \frac{\pi}{2} - \frac{1}{2} \sec^{-1}(x) \] ### Step 7: Differentiate \( y \) with respect to \( x \) Now we differentiate \( y \): \[ \frac{dy}{dx} = 0 - \frac{1}{2} \cdot \frac{d}{dx} \sec^{-1}(x) \] Using the derivative of \( \sec^{-1}(x) \): \[ \frac{d}{dx} \sec^{-1}(x) = \frac{1}{|x| \sqrt{x^2 - 1}} \] Thus, \[ \frac{dy}{dx} = -\frac{1}{2} \cdot \frac{1}{|x| \sqrt{x^2 - 1}} = -\frac{1}{2 |x| \sqrt{x^2 - 1}} \] ### Final Result The derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = -\frac{1}{2 |x| \sqrt{x^2 - 1}} \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise Section -B|35 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise Section - C ( More than one options are correct )|5 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise Try youself|16 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J ( Aakash Challengers Questions )|16 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J|12 Videos

Similar Questions

Explore conceptually related problems

If y= tan ^(-1) ((x)/(1+ sqrt(1- x ^(2)))), |x|le 1, then (dy)/(dx) at ((1)/(2)) is:

If y= tan^(-1)sqrt((1-sinx)/(1+sinx)) , then the value of (dy)/(dx) at x= (pi)/6 is.

If x=sqrt(1-y^2) , then (dy)/(dx)=

y=tan^(- 1)sqrt((1-x)/(1+x))f i n d(dy)/(dx)

tan^(- 1)(1/(sqrt(x^2-1))),|x|gt1

If y = tan ^-1[x/(1+sqrt(1-x^2))] "then find" dy/dx

If y=tan^(-1)((1-x)/(1+x)) , find (dy)/(dx) .

If y=tan^(-1){(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))},"f i n d"(dy)/(dx)

If y=sin^(-1)[xsqrt(1-x)-sqrt(x)sqrt(1-x^2]) and 0 < x < 1, then find (dy)/(dx)

If y=sin[2tan^(-1){sqrt((1-x)/(1+x))}], find (dy)/(dx)

AAKASH INSTITUTE ENGLISH-CONTINUITY AND DIFFERENTIABILITY-Assignment ( section -A)
  1. If x=2a t , y=a t^2 , where a is a constant, then find (d^2y)/(dx^2...

    Text Solution

    |

  2. If y = x^(1/x) , the value of (dy)/(dx) at x =e is equal to

    Text Solution

    |

  3. If y = tan^(-1)( sqrt((x+1)/(x-1))) " for " |x| gt 1 " then " (dy)/(d...

    Text Solution

    |

  4. If y="log"(2)"log"(2)(x), then (dy)/(dx) is equal to

    Text Solution

    |

  5. If f'(x)= sqrt(2x^(2)-1) and y=f(x^(2)),then (dy)/(dx) at x = 1 is

    Text Solution

    |

  6. Let the function f(x) be defined as f(x) = {:{((logx-1)/(x-e) , xnee),...

    Text Solution

    |

  7. Rolle's theorem is not applicable to f(x) = |x| in [ -2,2] because

    Text Solution

    |

  8. Lagrange's mean value theorem is not applicable to f(x) in [1,4] where...

    Text Solution

    |

  9. The value of C ( if exists ) in Lagrange's theorem for the function |x...

    Text Solution

    |

  10. If f be a function such that f(9)=9 and f'(9)=3, then lim(xto9)(sqrt(f...

    Text Solution

    |

  11. If f(x) = {{:(1/(1+e^(1//x)), x ne 0),(0,x=0):} then f(x) is

    Text Solution

    |

  12. f(x)=sqrt(1-sqrt(1-x^2) then at x=0 ,value of f(x) is

    Text Solution

    |

  13. Domain of differentiations of the function f(x) = |x -2| cos x is

    Text Solution

    |

  14. Let f(x) = (sin (pi [ x + pi]))/(1+[x]^(2)) where [] denotes the great...

    Text Solution

    |

  15. If f(x)=x^2+(x^2)/(1+x^2)+(x^2)/((1+x^2)^2)+ ....oo term then at x=0,f...

    Text Solution

    |

  16. Let f(x)={(|x+1|)/(tan^(- 1)(x+1)), x!=-1 ,1, x!=-1 Then f(x) is

    Text Solution

    |

  17. The value of lim(h to 0) (f(x+h)+f(x-h))/h is equal to

    Text Solution

    |

  18. If y = (e^(x)+1)/(e^(x)-1), " then" (y^(2))/2 + (dy)/(dx) is equal to

    Text Solution

    |

  19. If f(x)=e^(x)g(x),g(0)=2,g'(0)=1, then f'(0) is

    Text Solution

    |

  20. If ax^(2)+2hxy+by^(2)=0,"show that "(d^(2)y)/(dx^(2)) =0

    Text Solution

    |