Home
Class 12
MATHS
If y="log"(2)"log"(2)(x), then (dy)/(dx)...

If `y="log"_(2)"log"_(2)(x)`, then `(dy)/(dx)` is equal to

A

`1/x log_(2) e. log_(x) e`

B

`1/x log_(2) x `

C

` 1/x log_(e) x`

D

` 1/x log_(x) e`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to differentiate the function \( y = \log_2(\log_2(x)) \). Let's go through the steps one by one. ### Step 1: Rewrite the logarithm Using the change of base formula for logarithms, we can express \( y \) in terms of natural logarithms: \[ y = \log_2(\log_2(x)) = \frac{\log_e(\log_e(x))}{\log_e(2)} \] Here, \( \log_e \) denotes the natural logarithm (base \( e \)). ### Step 2: Differentiate \( y \) Now we differentiate \( y \) with respect to \( x \): \[ \frac{dy}{dx} = \frac{1}{\log_e(2)} \cdot \frac{d}{dx}[\log_e(\log_e(x))] \] ### Step 3: Differentiate \( \log_e(\log_e(x)) \) Using the chain rule, we differentiate \( \log_e(\log_e(x)) \): \[ \frac{d}{dx}[\log_e(\log_e(x))] = \frac{1}{\log_e(x)} \cdot \frac{d}{dx}[\log_e(x)] \] ### Step 4: Differentiate \( \log_e(x) \) Now, we differentiate \( \log_e(x) \): \[ \frac{d}{dx}[\log_e(x)] = \frac{1}{x} \] ### Step 5: Combine the results Substituting back into our previous expression: \[ \frac{d}{dx}[\log_e(\log_e(x))] = \frac{1}{\log_e(x)} \cdot \frac{1}{x} \] Thus, we have: \[ \frac{dy}{dx} = \frac{1}{\log_e(2)} \cdot \left(\frac{1}{\log_e(x)} \cdot \frac{1}{x}\right) \] This simplifies to: \[ \frac{dy}{dx} = \frac{1}{x \cdot \log_e(2) \cdot \log_e(x)} \] ### Final Answer Therefore, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = \frac{1}{x \cdot \log_e(2) \cdot \log_e(x)} \] ---
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise Section -B|35 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise Section - C ( More than one options are correct )|5 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise Try youself|16 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J ( Aakash Challengers Questions )|16 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J|12 Videos

Similar Questions

Explore conceptually related problems

If y=log_(x^(2)+4)(7x^(2)-5x+1) , then (dy)/(dx) is equal to

If y=log_(cosx)sinx, then (dy)/(dx) is equal to

If y="log"(xe^(x)),"then "(dy)/(dx) is

If y = log ((1-x^(2))/(1+x^(2))) , then (dy)/(dx) is equal to

If y = log ((1-x^(2))/(1+x^(2))) , then (dy)/(dx) is equal to

If y= log (sin x) , then (dy)/(dx) is

If y=e^(1+log_(e)x) , then the value of (dy)/(dx) is equal to

If y=x^((lnx)^ln(lnx)) , then (dy)/(dx) is equal to

If y=e^x log x then (dy)/(dx) is

If y=x^((logx)^log(logx)) then (dy)/(dx)=

AAKASH INSTITUTE ENGLISH-CONTINUITY AND DIFFERENTIABILITY-Assignment ( section -A)
  1. If y = x^(1/x) , the value of (dy)/(dx) at x =e is equal to

    Text Solution

    |

  2. If y = tan^(-1)( sqrt((x+1)/(x-1))) " for " |x| gt 1 " then " (dy)/(d...

    Text Solution

    |

  3. If y="log"(2)"log"(2)(x), then (dy)/(dx) is equal to

    Text Solution

    |

  4. If f'(x)= sqrt(2x^(2)-1) and y=f(x^(2)),then (dy)/(dx) at x = 1 is

    Text Solution

    |

  5. Let the function f(x) be defined as f(x) = {:{((logx-1)/(x-e) , xnee),...

    Text Solution

    |

  6. Rolle's theorem is not applicable to f(x) = |x| in [ -2,2] because

    Text Solution

    |

  7. Lagrange's mean value theorem is not applicable to f(x) in [1,4] where...

    Text Solution

    |

  8. The value of C ( if exists ) in Lagrange's theorem for the function |x...

    Text Solution

    |

  9. If f be a function such that f(9)=9 and f'(9)=3, then lim(xto9)(sqrt(f...

    Text Solution

    |

  10. If f(x) = {{:(1/(1+e^(1//x)), x ne 0),(0,x=0):} then f(x) is

    Text Solution

    |

  11. f(x)=sqrt(1-sqrt(1-x^2) then at x=0 ,value of f(x) is

    Text Solution

    |

  12. Domain of differentiations of the function f(x) = |x -2| cos x is

    Text Solution

    |

  13. Let f(x) = (sin (pi [ x + pi]))/(1+[x]^(2)) where [] denotes the great...

    Text Solution

    |

  14. If f(x)=x^2+(x^2)/(1+x^2)+(x^2)/((1+x^2)^2)+ ....oo term then at x=0,f...

    Text Solution

    |

  15. Let f(x)={(|x+1|)/(tan^(- 1)(x+1)), x!=-1 ,1, x!=-1 Then f(x) is

    Text Solution

    |

  16. The value of lim(h to 0) (f(x+h)+f(x-h))/h is equal to

    Text Solution

    |

  17. If y = (e^(x)+1)/(e^(x)-1), " then" (y^(2))/2 + (dy)/(dx) is equal to

    Text Solution

    |

  18. If f(x)=e^(x)g(x),g(0)=2,g'(0)=1, then f'(0) is

    Text Solution

    |

  19. If ax^(2)+2hxy+by^(2)=0,"show that "(d^(2)y)/(dx^(2)) =0

    Text Solution

    |

  20. Derivative of the function f(x) = log(5) (log(8)x), where x > 7 is

    Text Solution

    |