Home
Class 12
MATHS
If f be a function such that f(9)=9 and ...

If `f` be a function such that `f(9)=9` and `f'(9)=3`, then `lim_(xto9)(sqrt(f(x))-3)/(sqrt(x)-3)` is equal to

A

9

B

3

C

1

D

`1/3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 9} \frac{\sqrt{f(x)} - 3}{\sqrt{x} - 3} \), we will follow these steps: ### Step 1: Substitute the limit First, we substitute \( x = 9 \) into the limit expression: \[ \lim_{x \to 9} \frac{\sqrt{f(x)} - 3}{\sqrt{x} - 3} = \frac{\sqrt{f(9)} - 3}{\sqrt{9} - 3} \] Given that \( f(9) = 9 \), we have: \[ \sqrt{f(9)} = \sqrt{9} = 3 \] Thus, the limit becomes: \[ \frac{3 - 3}{3 - 3} = \frac{0}{0} \] This is an indeterminate form. ### Step 2: Apply L'Hôpital's Rule Since we have an indeterminate form \( \frac{0}{0} \), we can apply L'Hôpital's Rule. This involves taking the derivative of the numerator and the derivative of the denominator. The limit can be rewritten as: \[ \lim_{x \to 9} \frac{\sqrt{f(x)} - 3}{\sqrt{x} - 3} \] Taking the derivatives: 1. **Numerator**: The derivative of \( \sqrt{f(x)} \) using the chain rule is: \[ \frac{d}{dx}(\sqrt{f(x)}) = \frac{1}{2\sqrt{f(x)}} \cdot f'(x) \] 2. **Denominator**: The derivative of \( \sqrt{x} \) is: \[ \frac{d}{dx}(\sqrt{x}) = \frac{1}{2\sqrt{x}} \] Now we can apply L'Hôpital's Rule: \[ \lim_{x \to 9} \frac{\frac{1}{2\sqrt{f(x)}} f'(x)}{\frac{1}{2\sqrt{x}}} \] ### Step 3: Simplify the expression This simplifies to: \[ \lim_{x \to 9} \frac{f'(x)}{\sqrt{f(x)} \cdot \sqrt{x}} \] ### Step 4: Substitute \( x = 9 \) Now we can substitute \( x = 9 \): \[ \frac{f'(9)}{\sqrt{f(9)} \cdot \sqrt{9}} = \frac{f'(9)}{\sqrt{9} \cdot 3} = \frac{f'(9)}{3 \cdot 3} = \frac{f'(9)}{9} \] Given that \( f'(9) = 3 \): \[ \frac{3}{9} = \frac{1}{3} \] ### Final Result Thus, the limit is: \[ \lim_{x \to 9} \frac{\sqrt{f(x)} - 3}{\sqrt{x} - 3} = \frac{1}{3} \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise Section -B|35 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise Section - C ( More than one options are correct )|5 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise Try youself|16 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J ( Aakash Challengers Questions )|16 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J|12 Videos

Similar Questions

Explore conceptually related problems

If f(9)=9" and f'"(9)=4 then Lt_(x to 9)(sqrt(f(x))-3)/(sqrt(x)-3) is equal to

If f(9)=9,f^(prime)(9)=4,t h e n("lim")_(x->9)(sqrtf(x)-3)/(sqrtx-3)= ___________.

If f(4)=g(4)=2 , f^(prime)(4)=9,g^(prime)(4)=6, then (lim)_(xto4)(sqrt(f(x))-sqrt(g(x)))/(sqrt(x)-2) is equal to (a) 3sqrt(2) b. 3/(sqrt(2)) c. 0 d. does not exists

Evaluate lim_(xto3) ((x^(2)-9))/((x-3))

Evaluate lim_(x to 3) (sqrt(x + 3) - sqrt(6))/(x^(2) - 9)

Let f be a continuous real function such that f(11)=10 and for all x ,f(x)f(f(x))=1 then f(9)= 9 (b) 1/9 (c) (10)/9 (d) 9/(10)

If f: R->R is a function satisfying f(x+y)=f(x y) for all x ,y in R and f(3/4)=3/4 , then f(9/(16)) is a. 3/4 b. 9/(16) c. (sqrt(3))/2 d. 0

The third derivative of a function f'''(x) vanishes for all f(0)=1,f'(1)=2 and f''=-1, then f(x) is equal to (-3//2)x^2+3x+9

If f(x )=sqrt(25-x^(2)) , then what is underset(xto1)lim(f(x)-f(1))/(x-1) equal to

Find the values of x for which the following functions are identical. (i) f(x)=x " and " g(x)=(1)/(1//x) (ii) f(x)=(sqrt(9-x^(2)))/(sqrt(x-2)) " and " g(x)=sqrt((9-x^(2))/(x-2))

AAKASH INSTITUTE ENGLISH-CONTINUITY AND DIFFERENTIABILITY-Assignment ( section -A)
  1. If y = x^(1/x) , the value of (dy)/(dx) at x =e is equal to

    Text Solution

    |

  2. If y = tan^(-1)( sqrt((x+1)/(x-1))) " for " |x| gt 1 " then " (dy)/(d...

    Text Solution

    |

  3. If y="log"(2)"log"(2)(x), then (dy)/(dx) is equal to

    Text Solution

    |

  4. If f'(x)= sqrt(2x^(2)-1) and y=f(x^(2)),then (dy)/(dx) at x = 1 is

    Text Solution

    |

  5. Let the function f(x) be defined as f(x) = {:{((logx-1)/(x-e) , xnee),...

    Text Solution

    |

  6. Rolle's theorem is not applicable to f(x) = |x| in [ -2,2] because

    Text Solution

    |

  7. Lagrange's mean value theorem is not applicable to f(x) in [1,4] where...

    Text Solution

    |

  8. The value of C ( if exists ) in Lagrange's theorem for the function |x...

    Text Solution

    |

  9. If f be a function such that f(9)=9 and f'(9)=3, then lim(xto9)(sqrt(f...

    Text Solution

    |

  10. If f(x) = {{:(1/(1+e^(1//x)), x ne 0),(0,x=0):} then f(x) is

    Text Solution

    |

  11. f(x)=sqrt(1-sqrt(1-x^2) then at x=0 ,value of f(x) is

    Text Solution

    |

  12. Domain of differentiations of the function f(x) = |x -2| cos x is

    Text Solution

    |

  13. Let f(x) = (sin (pi [ x + pi]))/(1+[x]^(2)) where [] denotes the great...

    Text Solution

    |

  14. If f(x)=x^2+(x^2)/(1+x^2)+(x^2)/((1+x^2)^2)+ ....oo term then at x=0,f...

    Text Solution

    |

  15. Let f(x)={(|x+1|)/(tan^(- 1)(x+1)), x!=-1 ,1, x!=-1 Then f(x) is

    Text Solution

    |

  16. The value of lim(h to 0) (f(x+h)+f(x-h))/h is equal to

    Text Solution

    |

  17. If y = (e^(x)+1)/(e^(x)-1), " then" (y^(2))/2 + (dy)/(dx) is equal to

    Text Solution

    |

  18. If f(x)=e^(x)g(x),g(0)=2,g'(0)=1, then f'(0) is

    Text Solution

    |

  19. If ax^(2)+2hxy+by^(2)=0,"show that "(d^(2)y)/(dx^(2)) =0

    Text Solution

    |

  20. Derivative of the function f(x) = log(5) (log(8)x), where x > 7 is

    Text Solution

    |