Home
Class 12
MATHS
lf lim(x to 0) (sin x)/( tan 3x) =a, lim...

lf `lim_(x to 0) (sin x)/( tan 3x) =a, lim_( x to oo) (sinx)/x =b , lim_( x to oo)( log x)/x = c` then value of a + b + c is

A

1

B

1/3

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate three limits and then find the sum of their results. Let's break it down step by step. ### Step 1: Evaluate \( a = \lim_{x \to 0} \frac{\sin x}{\tan 3x} \) We start with the limit: \[ a = \lim_{x \to 0} \frac{\sin x}{\tan 3x} \] Recall that \( \tan 3x = \frac{\sin 3x}{\cos 3x} \). Thus, we can rewrite the limit as: \[ a = \lim_{x \to 0} \frac{\sin x}{\frac{\sin 3x}{\cos 3x}} = \lim_{x \to 0} \frac{\sin x \cdot \cos 3x}{\sin 3x} \] Now, we can use the fact that \( \lim_{x \to 0} \frac{\sin x}{x} = 1 \). We will manipulate the limit: \[ a = \lim_{x \to 0} \left( \frac{\sin x}{x} \cdot \frac{x}{\sin 3x} \cdot \cos 3x \right) \] Now, we know: \[ \lim_{x \to 0} \frac{\sin x}{x} = 1 \] Next, we need to evaluate \( \lim_{x \to 0} \frac{x}{\sin 3x} \): \[ \lim_{x \to 0} \frac{x}{\sin 3x} = \lim_{x \to 0} \frac{1}{3} \cdot \frac{3x}{\sin 3x} = \frac{1}{3} \cdot 1 = \frac{1}{3} \] And, since \( \cos 3x \) approaches \( \cos(0) = 1 \) as \( x \to 0 \): Putting it all together: \[ a = 1 \cdot \frac{1}{3} \cdot 1 = \frac{1}{3} \] ### Step 2: Evaluate \( b = \lim_{x \to \infty} \frac{\sin x}{x} \) Now we evaluate: \[ b = \lim_{x \to \infty} \frac{\sin x}{x} \] The sine function oscillates between -1 and 1, so: \[ -\frac{1}{x} \leq \frac{\sin x}{x} \leq \frac{1}{x} \] As \( x \to \infty \), both bounds approach 0. By the Squeeze Theorem: \[ b = 0 \] ### Step 3: Evaluate \( c = \lim_{x \to \infty} \frac{\log x}{x} \) Now we evaluate: \[ c = \lim_{x \to \infty} \frac{\log x}{x} \] This is an indeterminate form \( \frac{\infty}{\infty} \), so we can apply L'Hôpital's Rule: \[ c = \lim_{x \to \infty} \frac{\frac{d}{dx}(\log x)}{\frac{d}{dx}(x)} = \lim_{x \to \infty} \frac{\frac{1}{x}}{1} = \lim_{x \to \infty} \frac{1}{x} = 0 \] ### Step 4: Combine the results Now we have: \[ a = \frac{1}{3}, \quad b = 0, \quad c = 0 \] Thus, we find: \[ a + b + c = \frac{1}{3} + 0 + 0 = \frac{1}{3} \] ### Final Answer The value of \( a + b + c \) is: \[ \boxed{\frac{1}{3}} \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise Section - C ( More than one options are correct )|5 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise Section - D|6 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise Assignment ( section -A)|61 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J ( Aakash Challengers Questions )|16 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J|12 Videos

Similar Questions

Explore conceptually related problems

lim_(x->oo) (sinx/x) =

lim_(x->oo) xsin(2/x)

lim_(x rarr oo)(log(1+x))/(x)

lim_(x->oo)[sinx/x]

lim_(x->oo)sinx/x =

Evaluate lim_(x to oo) (sinx^(0))/(x).

Let lim_(x to 0) ("sin" 2X)/(x) = a and lim_(x to 0) (3x)/(tan x) = b , then a + b equals

lim_(x to 0) (x tan 3 x)/("sin"^(2) x) is

lim_(x rarr oo)((log x)/(x^(n)))

lim_(xto oo)(x/(1+x))^(x) is

AAKASH INSTITUTE ENGLISH-CONTINUITY AND DIFFERENTIABILITY-Section -B
  1. The value of lim(x->0)(1-1/2^x)(1/(sqrt(tanx+4)-2))

    Text Solution

    |

  2. lf lim(x to 0) (sin x)/( tan 3x) =a, lim( x to oo) (sinx)/x =b , lim( ...

    Text Solution

    |

  3. Let a = lim(x->0) x cotx and b = lim(x->0) xlog x, then

    Text Solution

    |

  4. lim(x to 0) (x tan 2x -2x tan x)/((1- cos 2x)^(2)) equal

    Text Solution

    |

  5. lim(x to oo) (( 1+x+x^(3)))/((ln x)^(3)) is equal to

    Text Solution

    |

  6. Find lim( x to 0) (sin x^(n))/((sin x)^(m)) " where" , m , n in Z^(+)...

    Text Solution

    |

  7. Let f(2)=4 and f'(2)=4. Then lim(x->2)(xf(2)-2f(x))/(x-2) is equal to

    Text Solution

    |

  8. If f(4)= 4, f'(4) =1 then lim(x to 4) 2((2-sqrtf(x))/ (2 - sqrtx)) is ...

    Text Solution

    |

  9. Evaluate: ("lim")(xvec0)(2^x-1)/(sqrt(1+x)-1)

    Text Solution

    |

  10. Let alpha and beta be the distinct roots of ax^(2) + bx + c = 0. Then ...

    Text Solution

    |

  11. ("lim")(xvec0)(sin(picos^2x)/(x^2)i se q u a lto -pi (b) pi (c) pi/...

    Text Solution

    |

  12. lim(x->oo)(sqrt(x+sqrt(x))-sqrt(x))equals

    Text Solution

    |

  13. lim(x->0)(1/(x^2)-1/(tan^2x))

    Text Solution

    |

  14. lim(x to oo) ((x-3)/(x+2))^x is equal to :

    Text Solution

    |

  15. underset(xto0)lim((1+tanx)/(1+sinx))^(cosecx) is equal to

    Text Solution

    |

  16. lim(x->0)((4^x+9^x)/2)^(1/x)

    Text Solution

    |

  17. If underset (xrarr0)"lim"(cosx+asinbx)^(1/x)=e^(2) then the possible v...

    Text Solution

    |

  18. underset(x to 0)(Lt) (sqrt(1 - cos 2 x))/(sqrt(2)x) =

    Text Solution

    |

  19. lim(x to 2^+) (([x]^(3))/(3) - [(x)/(3)]^(3)) is where [x] represents ...

    Text Solution

    |

  20. The value of lim(x to 0) ((4^(x) - 1)^(3))/("sin"(x)/(4) log (1 + (x^...

    Text Solution

    |