Home
Class 12
MATHS
Let a = lim(x->0) x cotx and b = lim(x->...

Let `a = lim_(x->0) x cotx` and `b = lim_(x->0) xlog x,` then

A

a =b

B

b > a

C

a =b+1

D

b =a +1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the limits for \( a \) and \( b \): 1. **Calculate \( a = \lim_{x \to 0} x \cot x \)** We know that: \[ \cot x = \frac{\cos x}{\sin x} \] Therefore: \[ x \cot x = x \cdot \frac{\cos x}{\sin x} = \frac{x \cos x}{\sin x} \] As \( x \to 0 \), both the numerator and denominator approach 0, which gives us the indeterminate form \( \frac{0}{0} \). We can apply L'Hôpital's Rule: Differentiate the numerator and the denominator: - Derivative of the numerator \( x \cos x \): \[ \frac{d}{dx}(x \cos x) = \cos x - x \sin x \] - Derivative of the denominator \( \sin x \): \[ \frac{d}{dx}(\sin x) = \cos x \] Now applying L'Hôpital's Rule: \[ a = \lim_{x \to 0} \frac{\cos x - x \sin x}{\cos x} \] Evaluating this limit as \( x \to 0 \): \[ a = \frac{\cos(0) - 0 \cdot \sin(0)}{\cos(0)} = \frac{1 - 0}{1} = 1 \] 2. **Calculate \( b = \lim_{x \to 0} x \log x \)** As \( x \to 0 \), \( \log x \to -\infty \), and thus \( x \log x \) approaches the indeterminate form \( 0 \cdot (-\infty) \). We can rewrite it as: \[ b = \lim_{x \to 0} \frac{\log x}{\frac{1}{x}} \] This is now in the form \( \frac{-\infty}{\infty} \), so we can apply L'Hôpital's Rule again: Differentiate the numerator and the denominator: - Derivative of \( \log x \): \[ \frac{d}{dx}(\log x) = \frac{1}{x} \] - Derivative of \( \frac{1}{x} \): \[ \frac{d}{dx}\left(\frac{1}{x}\right) = -\frac{1}{x^2} \] Now applying L'Hôpital's Rule: \[ b = \lim_{x \to 0} \frac{\frac{1}{x}}{-\frac{1}{x^2}} = \lim_{x \to 0} -x = 0 \] 3. **Conclusion:** We have found: \[ a = 1 \quad \text{and} \quad b = 0 \] Now we can check the options: - \( a = b \) → False (1 ≠ 0) - \( b > a \) → False (0 < 1) - \( a = b + 1 \) → True (1 = 0 + 1) - \( b = a + 1 \) → False (0 ≠ 1 + 1) Thus, the correct option is: \[ a = b + 1 \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise Section - C ( More than one options are correct )|5 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise Section - D|6 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise Assignment ( section -A)|61 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J ( Aakash Challengers Questions )|16 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J|12 Videos

Similar Questions

Explore conceptually related problems

lim_(x->0) (sin x /x)

lim_(xrarr0)x sec x

(lim)_(x->0)(cose cx-cotx)

lim_(xrarr0)(x^3 log x)

lim_(x->0)(tanm x)/(tann x)

Let a= lim_(x->0)ln(cos2x)/(3x^2), b=lim_(x->0)(sin^(2)2x)/(x(1-e^x)), c=lim_(x->1)(sqrt(x)-x)/lnx

(lim)_(x->0)(sina x)/(b x)

lim_(xrarr0) (ax+x cos x)/(b sinx)

lf lim_(x to 0) (sin x)/( tan 3x) =a, lim_( x to oo) (sinx)/x =b , lim_( x to oo)( log x)/x = c then value of a + b + c is

lim_(x rarr0)x(cosec x)

AAKASH INSTITUTE ENGLISH-CONTINUITY AND DIFFERENTIABILITY-Section -B
  1. The value of lim(x->0)(1-1/2^x)(1/(sqrt(tanx+4)-2))

    Text Solution

    |

  2. lf lim(x to 0) (sin x)/( tan 3x) =a, lim( x to oo) (sinx)/x =b , lim( ...

    Text Solution

    |

  3. Let a = lim(x->0) x cotx and b = lim(x->0) xlog x, then

    Text Solution

    |

  4. lim(x to 0) (x tan 2x -2x tan x)/((1- cos 2x)^(2)) equal

    Text Solution

    |

  5. lim(x to oo) (( 1+x+x^(3)))/((ln x)^(3)) is equal to

    Text Solution

    |

  6. Find lim( x to 0) (sin x^(n))/((sin x)^(m)) " where" , m , n in Z^(+)...

    Text Solution

    |

  7. Let f(2)=4 and f'(2)=4. Then lim(x->2)(xf(2)-2f(x))/(x-2) is equal to

    Text Solution

    |

  8. If f(4)= 4, f'(4) =1 then lim(x to 4) 2((2-sqrtf(x))/ (2 - sqrtx)) is ...

    Text Solution

    |

  9. Evaluate: ("lim")(xvec0)(2^x-1)/(sqrt(1+x)-1)

    Text Solution

    |

  10. Let alpha and beta be the distinct roots of ax^(2) + bx + c = 0. Then ...

    Text Solution

    |

  11. ("lim")(xvec0)(sin(picos^2x)/(x^2)i se q u a lto -pi (b) pi (c) pi/...

    Text Solution

    |

  12. lim(x->oo)(sqrt(x+sqrt(x))-sqrt(x))equals

    Text Solution

    |

  13. lim(x->0)(1/(x^2)-1/(tan^2x))

    Text Solution

    |

  14. lim(x to oo) ((x-3)/(x+2))^x is equal to :

    Text Solution

    |

  15. underset(xto0)lim((1+tanx)/(1+sinx))^(cosecx) is equal to

    Text Solution

    |

  16. lim(x->0)((4^x+9^x)/2)^(1/x)

    Text Solution

    |

  17. If underset (xrarr0)"lim"(cosx+asinbx)^(1/x)=e^(2) then the possible v...

    Text Solution

    |

  18. underset(x to 0)(Lt) (sqrt(1 - cos 2 x))/(sqrt(2)x) =

    Text Solution

    |

  19. lim(x to 2^+) (([x]^(3))/(3) - [(x)/(3)]^(3)) is where [x] represents ...

    Text Solution

    |

  20. The value of lim(x to 0) ((4^(x) - 1)^(3))/("sin"(x)/(4) log (1 + (x^...

    Text Solution

    |