Home
Class 12
MATHS
lim(x to 0) (x tan 2x -2x tan x)/((1- co...

` lim_(x to 0) (x tan 2x -2x tan x)/((1- cos 2x)^(2))` equal

A

1

B

`1/3`

C

`1/4`

D

`1/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \frac{x \tan 2x - 2x \tan x}{(1 - \cos 2x)^2} \), we can follow these steps: ### Step 1: Rewrite the limit expression We start with the original limit: \[ \lim_{x \to 0} \frac{x \tan 2x - 2x \tan x}{(1 - \cos 2x)^2} \] ### Step 2: Factor out common terms We can factor out \( x \) from the numerator: \[ = \lim_{x \to 0} \frac{x (\tan 2x - 2 \tan x)}{(1 - \cos 2x)^2} \] ### Step 3: Use the identity for \( 1 - \cos 2x \) Using the trigonometric identity \( 1 - \cos 2x = 2 \sin^2 x \), we rewrite the denominator: \[ = \lim_{x \to 0} \frac{x (\tan 2x - 2 \tan x)}{(2 \sin^2 x)^2} = \lim_{x \to 0} \frac{x (\tan 2x - 2 \tan x)}{4 \sin^4 x} \] ### Step 4: Simplify the limit Now we need to analyze the expression \( \tan 2x - 2 \tan x \). We can use the Taylor series expansion for small values of \( x \): - \( \tan x \approx x + \frac{x^3}{3} + O(x^5) \) - \( \tan 2x \approx 2x + \frac{(2x)^3}{3} + O(x^5) = 2x + \frac{8x^3}{3} + O(x^5) \) Thus, \[ \tan 2x - 2 \tan x \approx \left(2x + \frac{8x^3}{3}\right) - 2\left(x + \frac{x^3}{3}\right) = 2x + \frac{8x^3}{3} - 2x - \frac{2x^3}{3} = \frac{6x^3}{3} = 2x^3 \] ### Step 5: Substitute back into the limit Now substituting back into the limit: \[ = \lim_{x \to 0} \frac{x (2x^3)}{4 \sin^4 x} = \lim_{x \to 0} \frac{2x^4}{4 \sin^4 x} = \lim_{x \to 0} \frac{x^4}{2 \sin^4 x} \] ### Step 6: Use the limit \( \lim_{x \to 0} \frac{x}{\sin x} = 1 \) Using the fact that \( \lim_{x \to 0} \frac{x}{\sin x} = 1 \), we have: \[ \sin^4 x \approx x^4 \text{ as } x \to 0 \] Thus, \[ \lim_{x \to 0} \frac{x^4}{2 \sin^4 x} = \lim_{x \to 0} \frac{x^4}{2 (x^4)} = \frac{1}{2} \] ### Final Answer Therefore, the limit evaluates to: \[ \lim_{x \to 0} \frac{x \tan 2x - 2x \tan x}{(1 - \cos 2x)^2} = \frac{1}{2} \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise Section - C ( More than one options are correct )|5 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise Section - D|6 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise Assignment ( section -A)|61 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J ( Aakash Challengers Questions )|16 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J|12 Videos

Similar Questions

Explore conceptually related problems

lim_(x->0)((xtan2x-2xtanx)/(1-cos2x)^2) is equal to

Evaluate lim_(x to 0) (tan x + 4 tan 2x - 3tan 3x)/(x^(2) tan x)

lim_(x to 0) (2x)/(tan3x)=?

lim_(x to 0) (x)/(tan x) is equal to

Evaluate lim_(x to 0) (tan 5x)/(2x)

lim_(x to 0) (x tan 3 x)/("sin"^(2) x) is

lim_(x to 0) (cos 2x-1)/(cos x-1)

lim_(x -0) (1 - cos 4x)/(x^(2)) is equal to

lim_(x to pi/2) (tan2x)/(x-(pi)/(2))

lim_(xrarr0) (tan 4x)/(tan 2x)

AAKASH INSTITUTE ENGLISH-CONTINUITY AND DIFFERENTIABILITY-Section -B
  1. lf lim(x to 0) (sin x)/( tan 3x) =a, lim( x to oo) (sinx)/x =b , lim( ...

    Text Solution

    |

  2. Let a = lim(x->0) x cotx and b = lim(x->0) xlog x, then

    Text Solution

    |

  3. lim(x to 0) (x tan 2x -2x tan x)/((1- cos 2x)^(2)) equal

    Text Solution

    |

  4. lim(x to oo) (( 1+x+x^(3)))/((ln x)^(3)) is equal to

    Text Solution

    |

  5. Find lim( x to 0) (sin x^(n))/((sin x)^(m)) " where" , m , n in Z^(+)...

    Text Solution

    |

  6. Let f(2)=4 and f'(2)=4. Then lim(x->2)(xf(2)-2f(x))/(x-2) is equal to

    Text Solution

    |

  7. If f(4)= 4, f'(4) =1 then lim(x to 4) 2((2-sqrtf(x))/ (2 - sqrtx)) is ...

    Text Solution

    |

  8. Evaluate: ("lim")(xvec0)(2^x-1)/(sqrt(1+x)-1)

    Text Solution

    |

  9. Let alpha and beta be the distinct roots of ax^(2) + bx + c = 0. Then ...

    Text Solution

    |

  10. ("lim")(xvec0)(sin(picos^2x)/(x^2)i se q u a lto -pi (b) pi (c) pi/...

    Text Solution

    |

  11. lim(x->oo)(sqrt(x+sqrt(x))-sqrt(x))equals

    Text Solution

    |

  12. lim(x->0)(1/(x^2)-1/(tan^2x))

    Text Solution

    |

  13. lim(x to oo) ((x-3)/(x+2))^x is equal to :

    Text Solution

    |

  14. underset(xto0)lim((1+tanx)/(1+sinx))^(cosecx) is equal to

    Text Solution

    |

  15. lim(x->0)((4^x+9^x)/2)^(1/x)

    Text Solution

    |

  16. If underset (xrarr0)"lim"(cosx+asinbx)^(1/x)=e^(2) then the possible v...

    Text Solution

    |

  17. underset(x to 0)(Lt) (sqrt(1 - cos 2 x))/(sqrt(2)x) =

    Text Solution

    |

  18. lim(x to 2^+) (([x]^(3))/(3) - [(x)/(3)]^(3)) is where [x] represents ...

    Text Solution

    |

  19. The value of lim(x to 0) ((4^(x) - 1)^(3))/("sin"(x)/(4) log (1 + (x^...

    Text Solution

    |

  20. If f(x)= {:{((x^(2) + 3x+p)/(2(x^(2)-1)) , xne 1),(5/4, x = 1):} is co...

    Text Solution

    |