Home
Class 12
MATHS
lim(x to oo) (( 1+x+x^(3)))/((ln x)^(3)...

`lim_(x to oo) (( 1+x+x^(3)))/((ln x)^(3))` is equal to

A

2

B

`e^(2)`

C

`e^(-2)`

D

Not defined

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to \infty} \frac{1 + x + x^3}{(\ln x)^3} \), we will follow these steps: ### Step 1: Analyze the limit As \( x \) approaches infinity, both the numerator and denominator approach infinity, leading to the indeterminate form \( \frac{\infty}{\infty} \). ### Step 2: Apply L'Hôpital's Rule Since we have an indeterminate form, we can apply L'Hôpital's Rule, which states that if \( \lim_{x \to c} \frac{f(x)}{g(x)} = \frac{0}{0} \) or \( \frac{\infty}{\infty} \), then: \[ \lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)} \] We will differentiate the numerator and the denominator. ### Step 3: Differentiate the numerator and denominator - **Numerator**: \( f(x) = 1 + x + x^3 \) - \( f'(x) = 0 + 1 + 3x^2 = 1 + 3x^2 \) - **Denominator**: \( g(x) = (\ln x)^3 \) - Using the chain rule: - \( g'(x) = 3(\ln x)^2 \cdot \frac{1}{x} = \frac{3(\ln x)^2}{x} \) ### Step 4: Rewrite the limit Now we can rewrite the limit using the derivatives: \[ \lim_{x \to \infty} \frac{1 + 3x^2}{\frac{3(\ln x)^2}{x}} = \lim_{x \to \infty} \frac{(1 + 3x^2) \cdot x}{3(\ln x)^2} \] ### Step 5: Simplify the expression This simplifies to: \[ \lim_{x \to \infty} \frac{x + 3x^3}{3(\ln x)^2} \] ### Step 6: Analyze the new limit As \( x \to \infty \), the term \( 3x^3 \) dominates the numerator, so we can focus on that: \[ \lim_{x \to \infty} \frac{3x^3}{3(\ln x)^2} = \lim_{x \to \infty} \frac{x^3}{(\ln x)^2} \] ### Step 7: Apply L'Hôpital's Rule again This is still an indeterminate form \( \frac{\infty}{\infty} \), so we apply L'Hôpital's Rule again: - **Numerator**: \( f(x) = x^3 \) - \( f'(x) = 3x^2 \) - **Denominator**: \( g(x) = (\ln x)^2 \) - \( g'(x) = 2(\ln x) \cdot \frac{1}{x} = \frac{2\ln x}{x} \) Now we rewrite the limit: \[ \lim_{x \to \infty} \frac{3x^2}{\frac{2\ln x}{x}} = \lim_{x \to \infty} \frac{3x^3}{2\ln x} \] ### Step 8: Apply L'Hôpital's Rule again This is still \( \frac{\infty}{\infty} \), so we apply L'Hôpital's Rule again: - **Numerator**: \( f(x) = 3x^3 \) - \( f'(x) = 9x^2 \) - **Denominator**: \( g(x) = 2\ln x \) - \( g'(x) = \frac{2}{x} \) Now we rewrite the limit: \[ \lim_{x \to \infty} \frac{9x^2}{\frac{2}{x}} = \lim_{x \to \infty} \frac{9x^3}{2} \] ### Step 9: Evaluate the limit As \( x \to \infty \), \( \frac{9x^3}{2} \) approaches infinity. ### Final Result Thus, we conclude that: \[ \lim_{x \to \infty} \frac{1 + x + x^3}{(\ln x)^3} = \infty \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise Section - C ( More than one options are correct )|5 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise Section - D|6 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise Assignment ( section -A)|61 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J ( Aakash Challengers Questions )|16 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J|12 Videos

Similar Questions

Explore conceptually related problems

lim_(x to oo) ((x^(2)+ 5x+3)/(x^(2)+x+3))^(x) is equal to

lim_(xto oo)(x/(1+x))^(x) is

The value of lim_(x to 0) (log(sin 5x + cos 5x))/(tan 3x) is equal to

lim_(x rarr oo)((log x)/(x^(n)))

lim_(x rarr oo){((log x)^(3))/(x)}

lim_(x->oo)((x^3)/(3x^2-4)-(x^2)/(3x+2)) is equal to (a) does not exist (b) 1//3 (c) 0 (d) 2/9

What does lim_(x to oo)((3x^(2)+4x+2)/(2x^(2)+x-5)) equal ?

lim_(xtooo) (x(logx)^(3))/(1+x+x^(2)) equals

lim_(x rarr oo)(log(1+x))/(x)

lim_(xrarr oo) (1-(4)/(x-1))^(3x-1) is equal to

AAKASH INSTITUTE ENGLISH-CONTINUITY AND DIFFERENTIABILITY-Section -B
  1. Let a = lim(x->0) x cotx and b = lim(x->0) xlog x, then

    Text Solution

    |

  2. lim(x to 0) (x tan 2x -2x tan x)/((1- cos 2x)^(2)) equal

    Text Solution

    |

  3. lim(x to oo) (( 1+x+x^(3)))/((ln x)^(3)) is equal to

    Text Solution

    |

  4. Find lim( x to 0) (sin x^(n))/((sin x)^(m)) " where" , m , n in Z^(+)...

    Text Solution

    |

  5. Let f(2)=4 and f'(2)=4. Then lim(x->2)(xf(2)-2f(x))/(x-2) is equal to

    Text Solution

    |

  6. If f(4)= 4, f'(4) =1 then lim(x to 4) 2((2-sqrtf(x))/ (2 - sqrtx)) is ...

    Text Solution

    |

  7. Evaluate: ("lim")(xvec0)(2^x-1)/(sqrt(1+x)-1)

    Text Solution

    |

  8. Let alpha and beta be the distinct roots of ax^(2) + bx + c = 0. Then ...

    Text Solution

    |

  9. ("lim")(xvec0)(sin(picos^2x)/(x^2)i se q u a lto -pi (b) pi (c) pi/...

    Text Solution

    |

  10. lim(x->oo)(sqrt(x+sqrt(x))-sqrt(x))equals

    Text Solution

    |

  11. lim(x->0)(1/(x^2)-1/(tan^2x))

    Text Solution

    |

  12. lim(x to oo) ((x-3)/(x+2))^x is equal to :

    Text Solution

    |

  13. underset(xto0)lim((1+tanx)/(1+sinx))^(cosecx) is equal to

    Text Solution

    |

  14. lim(x->0)((4^x+9^x)/2)^(1/x)

    Text Solution

    |

  15. If underset (xrarr0)"lim"(cosx+asinbx)^(1/x)=e^(2) then the possible v...

    Text Solution

    |

  16. underset(x to 0)(Lt) (sqrt(1 - cos 2 x))/(sqrt(2)x) =

    Text Solution

    |

  17. lim(x to 2^+) (([x]^(3))/(3) - [(x)/(3)]^(3)) is where [x] represents ...

    Text Solution

    |

  18. The value of lim(x to 0) ((4^(x) - 1)^(3))/("sin"(x)/(4) log (1 + (x^...

    Text Solution

    |

  19. If f(x)= {:{((x^(2) + 3x+p)/(2(x^(2)-1)) , xne 1),(5/4, x = 1):} is co...

    Text Solution

    |

  20. In order that the function f(x)=(x+1)^(cotx) is continuous at x = 0, f...

    Text Solution

    |