Home
Class 12
MATHS
Find lim( x to 0) (sin x^(n))/((sin x)^...

Find ` lim_( x to 0) (sin x^(n))/((sin x)^(m)) " where" , m , n in Z^(+)` equal

A

(a)`1 if n lt m`

B

(b)`0 , if n = m `

C

(c)` n/m`

D

(d)`0, if n gt m `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \frac{\sin(x^n)}{(\sin x)^m} \) where \( m, n \in \mathbb{Z}^+ \), we will follow these steps: ### Step 1: Rewrite the limit We start with the limit: \[ \lim_{x \to 0} \frac{\sin(x^n)}{(\sin x)^m} \] ### Step 2: Use the small angle approximation Recall that for small values of \( x \), \( \sin x \approx x \). Therefore, we can use this approximation: \[ \sin(x^n) \approx x^n \quad \text{and} \quad \sin x \approx x \] ### Step 3: Substitute the approximations into the limit Substituting these approximations into our limit gives: \[ \lim_{x \to 0} \frac{x^n}{(x)^m} = \lim_{x \to 0} \frac{x^n}{x^m} = \lim_{x \to 0} x^{n-m} \] ### Step 4: Analyze the limit based on the value of \( n - m \) Now we analyze the limit based on the exponent \( n - m \): 1. **If \( n > m \)**: \[ \lim_{x \to 0} x^{n-m} = 0 \] 2. **If \( n = m \)**: \[ \lim_{x \to 0} x^{n-m} = \lim_{x \to 0} x^0 = 1 \] 3. **If \( n < m \)**: \[ \lim_{x \to 0} x^{n-m} = \lim_{x \to 0} \frac{1}{x^{m-n}} = \infty \] ### Conclusion Thus, the limit can be summarized as follows: - If \( n > m \), the limit is \( 0 \). - If \( n = m \), the limit is \( 1 \). - If \( n < m \), the limit is \( \infty \). ### Final Answer The limit \( \lim_{x \to 0} \frac{\sin(x^n)}{(\sin x)^m} \) equals: - \( 0 \) if \( n > m \) - \( 1 \) if \( n = m \) - \( \infty \) if \( n < m \) ---
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise Section - C ( More than one options are correct )|5 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise Section - D|6 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise Assignment ( section -A)|61 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J ( Aakash Challengers Questions )|16 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J|12 Videos

Similar Questions

Explore conceptually related problems

lim_(x to 0) (sin x^(@))/( x) is equal to

Evaluate: lim_(x to 0) (sin x)/(tan x)

Evaluate lim_(x to 0) ("sin"ax)/(x)

Evaluate lim_(x to 0) ("sin" 4x)/(6x)

Evaluate lim_(x to 0) ("sin"5x)/("sin"7x)

Evaluate lim_(x to 0) ("sin"^(2) 4x)/(x^(2))

lim_(x to 0) (sin 3x)/(x) is equal to

lim_(x to 0) (2 sin x - sin 2x)/(x^(3)) ie equal to

Evaluate : lim_(x to 1) (x^(m)-1)/(x^(n)-1)

lim_(x to 0) (sin^(2) x//4)/(x) is equal to

AAKASH INSTITUTE ENGLISH-CONTINUITY AND DIFFERENTIABILITY-Section -B
  1. lim(x to 0) (x tan 2x -2x tan x)/((1- cos 2x)^(2)) equal

    Text Solution

    |

  2. lim(x to oo) (( 1+x+x^(3)))/((ln x)^(3)) is equal to

    Text Solution

    |

  3. Find lim( x to 0) (sin x^(n))/((sin x)^(m)) " where" , m , n in Z^(+)...

    Text Solution

    |

  4. Let f(2)=4 and f'(2)=4. Then lim(x->2)(xf(2)-2f(x))/(x-2) is equal to

    Text Solution

    |

  5. If f(4)= 4, f'(4) =1 then lim(x to 4) 2((2-sqrtf(x))/ (2 - sqrtx)) is ...

    Text Solution

    |

  6. Evaluate: ("lim")(xvec0)(2^x-1)/(sqrt(1+x)-1)

    Text Solution

    |

  7. Let alpha and beta be the distinct roots of ax^(2) + bx + c = 0. Then ...

    Text Solution

    |

  8. ("lim")(xvec0)(sin(picos^2x)/(x^2)i se q u a lto -pi (b) pi (c) pi/...

    Text Solution

    |

  9. lim(x->oo)(sqrt(x+sqrt(x))-sqrt(x))equals

    Text Solution

    |

  10. lim(x->0)(1/(x^2)-1/(tan^2x))

    Text Solution

    |

  11. lim(x to oo) ((x-3)/(x+2))^x is equal to :

    Text Solution

    |

  12. underset(xto0)lim((1+tanx)/(1+sinx))^(cosecx) is equal to

    Text Solution

    |

  13. lim(x->0)((4^x+9^x)/2)^(1/x)

    Text Solution

    |

  14. If underset (xrarr0)"lim"(cosx+asinbx)^(1/x)=e^(2) then the possible v...

    Text Solution

    |

  15. underset(x to 0)(Lt) (sqrt(1 - cos 2 x))/(sqrt(2)x) =

    Text Solution

    |

  16. lim(x to 2^+) (([x]^(3))/(3) - [(x)/(3)]^(3)) is where [x] represents ...

    Text Solution

    |

  17. The value of lim(x to 0) ((4^(x) - 1)^(3))/("sin"(x)/(4) log (1 + (x^...

    Text Solution

    |

  18. If f(x)= {:{((x^(2) + 3x+p)/(2(x^(2)-1)) , xne 1),(5/4, x = 1):} is co...

    Text Solution

    |

  19. In order that the function f(x)=(x+1)^(cotx) is continuous at x = 0, f...

    Text Solution

    |

  20. The number of points at which the function f(x) = 1/ (log |2x|) is di...

    Text Solution

    |