Home
Class 12
MATHS
Let f(2)=4 and f'(2)=4. Then lim(x->2)(x...

Let `f(2)=4` and `f'(2)=4`. Then `lim_(x->2)(xf(2)-2f(x))/(x-2)` is equal to

A

`-1/3`

B

`-2`

C

`-4`

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 2} \frac{xf(2) - 2f(x)}{x - 2} \), given that \( f(2) = 4 \) and \( f'(2) = 4 \), we can follow these steps: ### Step 1: Substitute the known values into the limit expression We know that \( f(2) = 4 \). Therefore, we can substitute this into the limit expression: \[ \lim_{x \to 2} \frac{x \cdot 4 - 2f(x)}{x - 2} \] This simplifies to: \[ \lim_{x \to 2} \frac{4x - 2f(x)}{x - 2} \] ### Step 2: Evaluate the limit directly Now, we substitute \( x = 2 \): \[ \frac{4(2) - 2f(2)}{2 - 2} = \frac{8 - 8}{0} = \frac{0}{0} \] Since we encounter the indeterminate form \( \frac{0}{0} \), we can apply L'Hôpital's Rule. ### Step 3: Apply L'Hôpital's Rule According to L'Hôpital's Rule, we differentiate the numerator and the denominator: - The derivative of the numerator \( 4x - 2f(x) \) is \( 4 - 2f'(x) \). - The derivative of the denominator \( x - 2 \) is \( 1 \). Thus, we rewrite the limit as: \[ \lim_{x \to 2} \frac{4 - 2f'(x)}{1} \] ### Step 4: Substitute \( x = 2 \) again Now we substitute \( x = 2 \) into the new limit expression: \[ 4 - 2f'(2) \] Given that \( f'(2) = 4 \): \[ 4 - 2(4) = 4 - 8 = -4 \] ### Final Answer Thus, the limit is: \[ \lim_{x \to 2} \frac{xf(2) - 2f(x)}{x - 2} = -4 \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise Section - C ( More than one options are correct )|5 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise Section - D|6 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise Assignment ( section -A)|61 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J ( Aakash Challengers Questions )|16 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J|12 Videos

Similar Questions

Explore conceptually related problems

If f'(2)=2, f''(2) =1 , then lim_(xrarr2)(2x^2-4f'(x))/(x-2) , is

If f(2)=4 and f^(prime)(2)=1 , then find (lim)_(x->2)(x\ f(2)-2f\ (x))/(x-2) .

If f(3)=6 and f'(3)=2, then lim_(x to 3) (xf (3)-3f(x))/(x-3) is given by

It is given that f′ (a) exists, then lim_(x->a)(xf(a)-af(x))/(x-a) is equal to:

If f (x) = x^(4) + 2x^(3) , them lim_(x to 2) (f(x) - f(2))/(x - 2) is equal to

If f(2)=2a n df^(prime)(2)=1, then find (lim)_(xvec2)(xf(2)-2f(x))/(x-2)

If f(4)= 4, f'(4) =1 then lim_(x to 4) 2((2-sqrtf(x))/ (2 - sqrtx)) is equal to

Let f :RtoR be a positive, increasing function with lim_(xtooo) (f(3x))/(f(x))=1 . Then lim_(xtooo) (f(2x))/(f(x)) is equal to

Let f''(x) be continuous at x = 0 and f"(0) = 4 then value of lim_(x->0)(2f(x)-3f(2x)+f(4x))/(x^2)

If f(x) = lim_(n->oo) tan^(-1) (4n^2(1-cos(x/n))) and g(x) = lim_(n->oo) n^2/2 ln cos(2x/n) then lim_(x->0) (e^(-2g(x)) -e^(f(x)))/(x^6) equals

AAKASH INSTITUTE ENGLISH-CONTINUITY AND DIFFERENTIABILITY-Section -B
  1. lim(x to oo) (( 1+x+x^(3)))/((ln x)^(3)) is equal to

    Text Solution

    |

  2. Find lim( x to 0) (sin x^(n))/((sin x)^(m)) " where" , m , n in Z^(+)...

    Text Solution

    |

  3. Let f(2)=4 and f'(2)=4. Then lim(x->2)(xf(2)-2f(x))/(x-2) is equal to

    Text Solution

    |

  4. If f(4)= 4, f'(4) =1 then lim(x to 4) 2((2-sqrtf(x))/ (2 - sqrtx)) is ...

    Text Solution

    |

  5. Evaluate: ("lim")(xvec0)(2^x-1)/(sqrt(1+x)-1)

    Text Solution

    |

  6. Let alpha and beta be the distinct roots of ax^(2) + bx + c = 0. Then ...

    Text Solution

    |

  7. ("lim")(xvec0)(sin(picos^2x)/(x^2)i se q u a lto -pi (b) pi (c) pi/...

    Text Solution

    |

  8. lim(x->oo)(sqrt(x+sqrt(x))-sqrt(x))equals

    Text Solution

    |

  9. lim(x->0)(1/(x^2)-1/(tan^2x))

    Text Solution

    |

  10. lim(x to oo) ((x-3)/(x+2))^x is equal to :

    Text Solution

    |

  11. underset(xto0)lim((1+tanx)/(1+sinx))^(cosecx) is equal to

    Text Solution

    |

  12. lim(x->0)((4^x+9^x)/2)^(1/x)

    Text Solution

    |

  13. If underset (xrarr0)"lim"(cosx+asinbx)^(1/x)=e^(2) then the possible v...

    Text Solution

    |

  14. underset(x to 0)(Lt) (sqrt(1 - cos 2 x))/(sqrt(2)x) =

    Text Solution

    |

  15. lim(x to 2^+) (([x]^(3))/(3) - [(x)/(3)]^(3)) is where [x] represents ...

    Text Solution

    |

  16. The value of lim(x to 0) ((4^(x) - 1)^(3))/("sin"(x)/(4) log (1 + (x^...

    Text Solution

    |

  17. If f(x)= {:{((x^(2) + 3x+p)/(2(x^(2)-1)) , xne 1),(5/4, x = 1):} is co...

    Text Solution

    |

  18. In order that the function f(x)=(x+1)^(cotx) is continuous at x = 0, f...

    Text Solution

    |

  19. The number of points at which the function f(x) = 1/ (log |2x|) is di...

    Text Solution

    |

  20. If f(x)={:{(xe^(-(1/(|x|) + 1/x)), x ne 0),(0 , x =0 ):} then f(x) is

    Text Solution

    |