Home
Class 12
MATHS
If f(4)= 4, f'(4) =1 then lim(x to 4) 2(...

If f(4)= 4, f'(4) =1 then `lim_(x to 4) 2((2-sqrtf(x))/ (2 - sqrtx))` is equal to

A

0

B

2

C

`-1`

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 4} 2 \frac{2 - \sqrt{f(x)}}{2 - \sqrt{x}} \) given that \( f(4) = 4 \) and \( f'(4) = 1 \), we can follow these steps: ### Step 1: Substitute the limit First, we substitute \( x = 4 \) into the limit expression: \[ \lim_{x \to 4} 2 \frac{2 - \sqrt{f(x)}}{2 - \sqrt{x}} = 2 \frac{2 - \sqrt{f(4)}}{2 - \sqrt{4}} \] ### Step 2: Evaluate \( f(4) \) and \( \sqrt{4} \) From the problem, we know: - \( f(4) = 4 \) - \( \sqrt{4} = 2 \) Substituting these values into the expression gives: \[ = 2 \frac{2 - \sqrt{4}}{2 - 2} = 2 \frac{2 - 2}{2 - 2} = 2 \frac{0}{0} \] ### Step 3: Identify the indeterminate form We see that we have an indeterminate form \( \frac{0}{0} \). Therefore, we can apply L'Hôpital's Rule. ### Step 4: Apply L'Hôpital's Rule According to L'Hôpital's Rule, we differentiate the numerator and denominator: \[ \lim_{x \to 4} 2 \frac{2 - \sqrt{f(x)}}{2 - \sqrt{x}} = 2 \lim_{x \to 4} \frac{-\frac{1}{2\sqrt{f(x)}} f'(x)}{-\frac{1}{2\sqrt{x}}} \] ### Step 5: Simplify the expression This simplifies to: \[ = 2 \lim_{x \to 4} \frac{f'(x)}{\sqrt{f(x)} \cdot \sqrt{x}} \] ### Step 6: Substitute \( x = 4 \) again Now we substitute \( x = 4 \): \[ = 2 \cdot \frac{f'(4)}{\sqrt{f(4)} \cdot \sqrt{4}} = 2 \cdot \frac{f'(4)}{\sqrt{4} \cdot 2} \] ### Step 7: Use given values We know: - \( f'(4) = 1 \) - \( \sqrt{4} = 2 \) Substituting these values gives: \[ = 2 \cdot \frac{1}{2 \cdot 2} = 2 \cdot \frac{1}{4} = \frac{2}{4} = \frac{1}{2} \] ### Final Answer Thus, the limit is: \[ \lim_{x \to 4} 2 \frac{2 - \sqrt{f(x)}}{2 - \sqrt{x}} = 2 \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise Section - C ( More than one options are correct )|5 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise Section - D|6 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise Assignment ( section -A)|61 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J ( Aakash Challengers Questions )|16 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J|12 Videos

Similar Questions

Explore conceptually related problems

lim_(x to 4) (x^(2) - 16)/(sqrt(x) - 2) is equal to

If f (x) = x^(4) + 2x^(3) , them lim_(x to 2) (f(x) - f(2))/(x - 2) is equal to

If f(4)=g(4)=2 , f^(prime)(4)=9,g^(prime)(4)=6, then (lim)_(xto4)(sqrt(f(x))-sqrt(g(x)))/(sqrt(x)-2) is equal to (a) 3sqrt(2) b. 3/(sqrt(2)) c. 0 d. does not exists

If f'(2)=2, f''(2) =1 , then lim_(xrarr2)(2x^2-4f'(x))/(x-2) , is

Let f(2)=4 and f'(2)=4 . Then lim_(x->2)(xf(2)-2f(x))/(x-2) is equal to

If f(x)=0 is a quadratic equation such that f(-pi)=f(pi)=0 and f((pi)/(2))=-(3pi^(2))/(4) , then lim_(xto -pi^+) (f(x))/(sin(sinx)) is equal to

If f(x) = (x-4) / (2sqrtx) , then f' (4) is equal to

If f(x) =(x-4)/(2sqrt(x)) , then f^(')(1) is equal to

lim_(x->oo) ((x^2-2x+1)/(x^2-4x+2))^x is equal to

If f(x+4) = x^(2) - 1 , then f(x) is equal to

AAKASH INSTITUTE ENGLISH-CONTINUITY AND DIFFERENTIABILITY-Section -B
  1. Find lim( x to 0) (sin x^(n))/((sin x)^(m)) " where" , m , n in Z^(+)...

    Text Solution

    |

  2. Let f(2)=4 and f'(2)=4. Then lim(x->2)(xf(2)-2f(x))/(x-2) is equal to

    Text Solution

    |

  3. If f(4)= 4, f'(4) =1 then lim(x to 4) 2((2-sqrtf(x))/ (2 - sqrtx)) is ...

    Text Solution

    |

  4. Evaluate: ("lim")(xvec0)(2^x-1)/(sqrt(1+x)-1)

    Text Solution

    |

  5. Let alpha and beta be the distinct roots of ax^(2) + bx + c = 0. Then ...

    Text Solution

    |

  6. ("lim")(xvec0)(sin(picos^2x)/(x^2)i se q u a lto -pi (b) pi (c) pi/...

    Text Solution

    |

  7. lim(x->oo)(sqrt(x+sqrt(x))-sqrt(x))equals

    Text Solution

    |

  8. lim(x->0)(1/(x^2)-1/(tan^2x))

    Text Solution

    |

  9. lim(x to oo) ((x-3)/(x+2))^x is equal to :

    Text Solution

    |

  10. underset(xto0)lim((1+tanx)/(1+sinx))^(cosecx) is equal to

    Text Solution

    |

  11. lim(x->0)((4^x+9^x)/2)^(1/x)

    Text Solution

    |

  12. If underset (xrarr0)"lim"(cosx+asinbx)^(1/x)=e^(2) then the possible v...

    Text Solution

    |

  13. underset(x to 0)(Lt) (sqrt(1 - cos 2 x))/(sqrt(2)x) =

    Text Solution

    |

  14. lim(x to 2^+) (([x]^(3))/(3) - [(x)/(3)]^(3)) is where [x] represents ...

    Text Solution

    |

  15. The value of lim(x to 0) ((4^(x) - 1)^(3))/("sin"(x)/(4) log (1 + (x^...

    Text Solution

    |

  16. If f(x)= {:{((x^(2) + 3x+p)/(2(x^(2)-1)) , xne 1),(5/4, x = 1):} is co...

    Text Solution

    |

  17. In order that the function f(x)=(x+1)^(cotx) is continuous at x = 0, f...

    Text Solution

    |

  18. The number of points at which the function f(x) = 1/ (log |2x|) is di...

    Text Solution

    |

  19. If f(x)={:{(xe^(-(1/(|x|) + 1/x)), x ne 0),(0 , x =0 ):} then f(x) is

    Text Solution

    |

  20. The set of points where f(x)=x/(1+|x|) is differentiable is

    Text Solution

    |