Home
Class 12
MATHS
lim(x->0)(1/(x^2)-1/(tan^2x))...

`lim_(x->0)(1/(x^2)-1/(tan^2x))`

A

0

B

`1/3`

C

`2/3`

D

`1/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \left( \frac{1}{x^2} - \frac{1}{\tan^2 x} \right) \), we will follow these steps: ### Step 1: Rewrite the Limit We start by rewriting the limit expression: \[ \lim_{x \to 0} \left( \frac{1}{x^2} - \frac{1}{\tan^2 x} \right) = \lim_{x \to 0} \left( \frac{\tan^2 x - x^2}{x^2 \tan^2 x} \right) \] ### Step 2: Find a Common Denominator To combine the fractions, we take the common denominator \( x^2 \tan^2 x \): \[ = \lim_{x \to 0} \frac{\tan^2 x - x^2}{x^2 \tan^2 x} \] ### Step 3: Use the Identity for \(\tan^2 x\) Recall that \( \tan x = \frac{\sin x}{\cos x} \), hence: \[ \tan^2 x = \frac{\sin^2 x}{\cos^2 x} \] Thus, we can rewrite the limit as: \[ = \lim_{x \to 0} \frac{\frac{\sin^2 x}{\cos^2 x} - x^2}{x^2 \frac{\sin^2 x}{\cos^2 x}} \] ### Step 4: Simplify the Expression Now, we simplify the numerator: \[ = \lim_{x \to 0} \frac{\sin^2 x - x^2 \cos^2 x}{x^2 \sin^2 x} \] ### Step 5: Apply Taylor Series Expansion Using the Taylor series expansion for \( \sin x \): \[ \sin x \approx x - \frac{x^3}{6} + O(x^5) \] Thus, \[ \sin^2 x \approx \left(x - \frac{x^3}{6}\right)^2 = x^2 - \frac{x^4}{3} + O(x^6) \] Substituting this into our limit gives: \[ = \lim_{x \to 0} \frac{x^2 - \frac{x^4}{3} - x^2 \cos^2 x}{x^2 \sin^2 x} \] ### Step 6: Expand \(\cos^2 x\) Using the Taylor series for \( \cos x \): \[ \cos x \approx 1 - \frac{x^2}{2} + O(x^4) \] Thus, \[ \cos^2 x \approx 1 - x^2 + O(x^4) \] Now substituting this into our limit: \[ = \lim_{x \to 0} \frac{x^2 - \frac{x^4}{3} - x^2(1 - x^2)}{x^2 \left(x^2 - \frac{x^4}{3}\right)} \] ### Step 7: Simplify Further This simplifies to: \[ = \lim_{x \to 0} \frac{-\frac{x^4}{3}}{x^2 \left(x^2 - \frac{x^4}{3}\right)} \] ### Step 8: Cancel Common Terms Now we can cancel \( x^2 \): \[ = \lim_{x \to 0} \frac{-\frac{x^2}{3}}{x^2 - \frac{x^4}{3}} = \lim_{x \to 0} \frac{-\frac{1}{3}}{1 - \frac{x^2}{3}} = -\frac{1}{3} \] ### Step 9: Evaluate the Limit As \( x \to 0 \), \( \frac{x^2}{3} \) approaches \( 0 \): \[ = -\frac{1}{3} \] ### Final Answer Thus, the limit is: \[ \lim_{x \to 0} \left( \frac{1}{x^2} - \frac{1}{\tan^2 x} \right) = \frac{2}{3} \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise Section - C ( More than one options are correct )|5 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise Section - D|6 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise Assignment ( section -A)|61 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J ( Aakash Challengers Questions )|16 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J|12 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following limit: lim_(x->0)(1-cos2x)/(3tan^2x)

the value of lim_(x->0){(cosx)^(1/(sin^2x))+(sin2x+2tan^-13x+3x^2)/(ln(1+3x+sin^2x)+xe^x)}

lim_(x->0)((4^x+9^x)/2)^(1/x)

Evaluate : lim_(x->0)(log)_(tan^2x)(tan^2 2x)dot

Evaluate: lim_(x->0) (1-cos2x)/(x^2)

lim_(x->0)(tan8x)/(sin2x)

lim_(xrarr0) (tan 4x)/(tan 2x)

lim_(x->0)(1-cos2x+tan^2x)/(xsinx)

Evaluate the following limit: (lim)_(x->0^+)(1+tan^2sqrt(x))^(1//2x)

Use formula lim_(x->0)(a^x-1)/x=log(a) to find lim_(x->0)(2^x-1)/((1+x)^(1/2)-1)

AAKASH INSTITUTE ENGLISH-CONTINUITY AND DIFFERENTIABILITY-Section -B
  1. ("lim")(xvec0)(sin(picos^2x)/(x^2)i se q u a lto -pi (b) pi (c) pi/...

    Text Solution

    |

  2. lim(x->oo)(sqrt(x+sqrt(x))-sqrt(x))equals

    Text Solution

    |

  3. lim(x->0)(1/(x^2)-1/(tan^2x))

    Text Solution

    |

  4. lim(x to oo) ((x-3)/(x+2))^x is equal to :

    Text Solution

    |

  5. underset(xto0)lim((1+tanx)/(1+sinx))^(cosecx) is equal to

    Text Solution

    |

  6. lim(x->0)((4^x+9^x)/2)^(1/x)

    Text Solution

    |

  7. If underset (xrarr0)"lim"(cosx+asinbx)^(1/x)=e^(2) then the possible v...

    Text Solution

    |

  8. underset(x to 0)(Lt) (sqrt(1 - cos 2 x))/(sqrt(2)x) =

    Text Solution

    |

  9. lim(x to 2^+) (([x]^(3))/(3) - [(x)/(3)]^(3)) is where [x] represents ...

    Text Solution

    |

  10. The value of lim(x to 0) ((4^(x) - 1)^(3))/("sin"(x)/(4) log (1 + (x^...

    Text Solution

    |

  11. If f(x)= {:{((x^(2) + 3x+p)/(2(x^(2)-1)) , xne 1),(5/4, x = 1):} is co...

    Text Solution

    |

  12. In order that the function f(x)=(x+1)^(cotx) is continuous at x = 0, f...

    Text Solution

    |

  13. The number of points at which the function f(x) = 1/ (log |2x|) is di...

    Text Solution

    |

  14. If f(x)={:{(xe^(-(1/(|x|) + 1/x)), x ne 0),(0 , x =0 ):} then f(x) is

    Text Solution

    |

  15. The set of points where f(x)=x/(1+|x|) is differentiable is

    Text Solution

    |

  16. The function |x^2 - 3x+2| + cos |x| is not differentiableat x=

    Text Solution

    |

  17. At x = 0 , the function y = e^(-|x|) is

    Text Solution

    |

  18. Let f(x) = lambda + mu|x|+nu|x|^2, where lambda,mu, nu in R, then f'(0...

    Text Solution

    |

  19. If {x} denotes the fractional part of x, then underset(x to 0)(lim) ({...

    Text Solution

    |

  20. Let f(x) = [x] , g(x)= |x| and f{g(x)} = h(x) ,where [.] is the gre...

    Text Solution

    |