Home
Class 12
MATHS
lim(x->0)((4^x+9^x)/2)^(1/x)...

`lim_(x->0)((4^x+9^x)/2)^(1/x)`

A

2

B

6

C

16

D

112

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem \( \lim_{x \to 0} \left( \frac{4^x + 9^x}{2} \right)^{\frac{1}{x}} \), we can follow these steps: ### Step 1: Recognize the limit form We start by substituting \( x = 0 \) into the expression: \[ \frac{4^0 + 9^0}{2} = \frac{1 + 1}{2} = 1 \] Thus, we have the limit in the form \( 1^{\infty} \), which is an indeterminate form. **Hint:** When you encounter \( 1^{\infty} \), consider using the exponential limit transformation. ### Step 2: Use the exponential limit transformation We can rewrite the limit using the exponential function: \[ \lim_{x \to 0} \left( \frac{4^x + 9^x}{2} \right)^{\frac{1}{x}} = e^{\lim_{x \to 0} \left( \frac{4^x + 9^x}{2} - 1 \right) \cdot \frac{1}{x}} \] **Hint:** This transformation helps us to convert the limit into a more manageable form. ### Step 3: Simplify the expression inside the limit Now, we need to compute: \[ \lim_{x \to 0} \left( \frac{4^x + 9^x}{2} - 1 \right) \cdot \frac{1}{x} \] Using the Taylor expansion for \( a^x \) around \( x = 0 \): \[ a^x \approx 1 + x \ln a \quad \text{for small } x \] we can expand \( 4^x \) and \( 9^x \): \[ 4^x \approx 1 + x \ln 4, \quad 9^x \approx 1 + x \ln 9 \] Thus, \[ \frac{4^x + 9^x}{2} \approx \frac{(1 + x \ln 4) + (1 + x \ln 9)}{2} = 1 + \frac{x (\ln 4 + \ln 9)}{2} \] **Hint:** Use Taylor series expansions for exponential functions to simplify the limit. ### Step 4: Substitute back into the limit Now substituting back, we have: \[ \frac{4^x + 9^x}{2} - 1 \approx \frac{x (\ln 4 + \ln 9)}{2} \] Thus, our limit becomes: \[ \lim_{x \to 0} \left( \frac{x (\ln 4 + \ln 9)}{2} \right) \cdot \frac{1}{x} = \lim_{x \to 0} \frac{\ln 4 + \ln 9}{2} = \frac{\ln 4 + \ln 9}{2} \] **Hint:** The \( x \) terms will cancel out, leaving a constant. ### Step 5: Calculate the final limit Now we can simplify: \[ \frac{\ln 4 + \ln 9}{2} = \frac{\ln(4 \cdot 9)}{2} = \frac{\ln 36}{2} = \ln 6 \] Thus, we have: \[ \lim_{x \to 0} \left( \frac{4^x + 9^x}{2} \right)^{\frac{1}{x}} = e^{\ln 6} = 6 \] **Final Answer:** \[ \lim_{x \to 0} \left( \frac{4^x + 9^x}{2} \right)^{\frac{1}{x}} = 6 \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise Section - C ( More than one options are correct )|5 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise Section - D|6 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise Assignment ( section -A)|61 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J ( Aakash Challengers Questions )|16 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J|12 Videos

Similar Questions

Explore conceptually related problems

Use formula lim_(x->0)(a^x-1)/x=log(a) to find lim_(x->0)(2^x-1)/((1+x)^(1/2)-1)

If lim_(x->0)[1+x+(f(x))/x]^(1/x)=e^3, then find the value of 1n(lim_(x->0)[1+(f(x))/x]^(1/x))i s____

Evaluate: lim_(x->0)(e-(1+x)^(1/x))/x

lim_(x->0)(1/(x^2)-1/(tan^2x))

lim_(xto0) ((729)^(x)-(243)^(x)-(81)^(x)+9^(x)+3^(x)-1)/(x^(3))

Evaluate the following limit: (lim)_(x->0)(9^x-26^x+4^x)/(x^2)

lim_(x->0) ((1+x)^(1/x)-e)/x is equal to

Evaluate the following limit: (lim)_(x->0)(8^x-4^x-2^x+1)/(x^2)

lim_(x->0)(2 7^x-9^x-3^x+1)/(sqrt(2)-sqrt(1+cosx))

lim_(x->oo)((x^3)/(3x^2-4)-(x^2)/(3x+2)) is equal to (a) does not exist (b) 1//3 (c) 0 (d) 2/9

AAKASH INSTITUTE ENGLISH-CONTINUITY AND DIFFERENTIABILITY-Section -B
  1. lim(x to oo) ((x-3)/(x+2))^x is equal to :

    Text Solution

    |

  2. underset(xto0)lim((1+tanx)/(1+sinx))^(cosecx) is equal to

    Text Solution

    |

  3. lim(x->0)((4^x+9^x)/2)^(1/x)

    Text Solution

    |

  4. If underset (xrarr0)"lim"(cosx+asinbx)^(1/x)=e^(2) then the possible v...

    Text Solution

    |

  5. underset(x to 0)(Lt) (sqrt(1 - cos 2 x))/(sqrt(2)x) =

    Text Solution

    |

  6. lim(x to 2^+) (([x]^(3))/(3) - [(x)/(3)]^(3)) is where [x] represents ...

    Text Solution

    |

  7. The value of lim(x to 0) ((4^(x) - 1)^(3))/("sin"(x)/(4) log (1 + (x^...

    Text Solution

    |

  8. If f(x)= {:{((x^(2) + 3x+p)/(2(x^(2)-1)) , xne 1),(5/4, x = 1):} is co...

    Text Solution

    |

  9. In order that the function f(x)=(x+1)^(cotx) is continuous at x = 0, f...

    Text Solution

    |

  10. The number of points at which the function f(x) = 1/ (log |2x|) is di...

    Text Solution

    |

  11. If f(x)={:{(xe^(-(1/(|x|) + 1/x)), x ne 0),(0 , x =0 ):} then f(x) is

    Text Solution

    |

  12. The set of points where f(x)=x/(1+|x|) is differentiable is

    Text Solution

    |

  13. The function |x^2 - 3x+2| + cos |x| is not differentiableat x=

    Text Solution

    |

  14. At x = 0 , the function y = e^(-|x|) is

    Text Solution

    |

  15. Let f(x) = lambda + mu|x|+nu|x|^2, where lambda,mu, nu in R, then f'(0...

    Text Solution

    |

  16. If {x} denotes the fractional part of x, then underset(x to 0)(lim) ({...

    Text Solution

    |

  17. Let f(x) = [x] , g(x)= |x| and f{g(x)} = h(x) ,where [.] is the gre...

    Text Solution

    |

  18. A function f is defined by f(x^(2) ) = x^(3) AA x gt 0 then f(4) equ...

    Text Solution

    |

  19. If 3sin(x y)+4cos(x y)=5 , then (dy)/(dx)= (a) y/x (b) (3sin(x y)+4...

    Text Solution

    |

  20. Let f(x) = maximum {4, 1 + x^(2), x^(2) -1}, AA x in R. Then, the tota...

    Text Solution

    |