Home
Class 12
MATHS
If underset (xrarr0)"lim"(cosx+asinbx)^(...

If `underset (xrarr0)"lim"(cosx+asinbx)^(1/x)=e^(2)` then the possible values of a and b are

A

a =1 , b = -2

B

`a = 2sqrt2, b = sqrt2`

C

`a=2sqrt2 , b = 1/ sqrt2`

D

a= -2 , b = 1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \( a \) and \( b \) such that: \[ \lim_{x \to 0} ( \cos x + a \sin(bx) )^{\frac{1}{x}} = e^2 \] ### Step 1: Take the natural logarithm of both sides Taking the natural logarithm of both sides gives: \[ \lim_{x \to 0} \frac{1}{x} \ln(\cos x + a \sin(bx)) = 2 \] ### Step 2: Rewrite the limit We can rewrite the limit as: \[ \lim_{x \to 0} \frac{\ln(\cos x + a \sin(bx))}{x} = 2 \] ### Step 3: Analyze the expression inside the logarithm As \( x \to 0 \): - \( \cos x \to 1 \) - \( \sin(bx) \to bx \) Thus, we have: \[ \cos x + a \sin(bx) \to 1 + 0 = 1 \] This means we need to evaluate the limit carefully since both the numerator and denominator approach 0. ### Step 4: Apply L'Hôpital's Rule Since we have a \( \frac{0}{0} \) form, we can apply L'Hôpital's Rule: \[ \lim_{x \to 0} \frac{\ln(\cos x + a \sin(bx))}{x} = \lim_{x \to 0} \frac{\frac{d}{dx}[\ln(\cos x + a \sin(bx))]}{\frac{d}{dx}[x]} \] ### Step 5: Differentiate the numerator Using the chain rule, we differentiate the numerator: \[ \frac{d}{dx}[\ln(\cos x + a \sin(bx))] = \frac{1}{\cos x + a \sin(bx)} \left( -\sin x + ab \cos(bx) \right) \] ### Step 6: Evaluate the limit Now substituting \( x = 0 \): - \( \cos(0) = 1 \) - \( \sin(0) = 0 \) - \( \cos(b \cdot 0) = 1 \) Thus, we have: \[ \lim_{x \to 0} \frac{-\sin(0) + ab \cdot 1}{1 + 0} = ab \] So we need: \[ ab = 2 \] ### Step 7: Find possible values of \( a \) and \( b \) The equation \( ab = 2 \) has multiple solutions. For example: 1. \( a = 2, b = 1 \) 2. \( a = 1, b = 2 \) 3. \( a = -2, b = -1 \) 4. \( a = -1, b = -2 \) ### Conclusion The possible values of \( a \) and \( b \) that satisfy the equation \( ab = 2 \) can be any pairs of real numbers whose product is 2.
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise Section - C ( More than one options are correct )|5 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise Section - D|6 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise Assignment ( section -A)|61 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J ( Aakash Challengers Questions )|16 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J|12 Videos

Similar Questions

Explore conceptually related problems

If lim_(xrarr0) (cosx+a sinbx)^(1//x)= e^2 , then the values of a and b are

underset(xrarr0)(lim)(sinnx)/x is equal to

Evaluate: underset(xrarr0)lim((1-x)^n-1)/(x)

lim_(xrarr0)((1-cos x)/x^2)

lim_(xrarr0) (ax+x cos x)/(b sinx)

lim_(xrarr0)(cos 2x-1)/(cosx-1)

If underset(xto0)lim(f(x))/(sin^(2)x)=8,underset(xto0)lim(g(x))/(2cosx-xe^(x)+x^(3)+x-2)=lamda" and " underset(xto0)lim(1+2f(x))^((1)/(g(x)))=(1)/(e)," then" The value of lamda is

The value of lim_(xrarr0)(cos x+sin bx)^((a)/(x)) is equal to

If lim_(xrarr0) (x(1+acos x)-bsin x)/(x)=1 , then a-b, are

If L=lim_(xrarr0)((e^(-x^(2)/2)-cosx)/(x^(2)tan^(2)x)) , then the value of 3L is equal to

AAKASH INSTITUTE ENGLISH-CONTINUITY AND DIFFERENTIABILITY-Section -B
  1. underset(xto0)lim((1+tanx)/(1+sinx))^(cosecx) is equal to

    Text Solution

    |

  2. lim(x->0)((4^x+9^x)/2)^(1/x)

    Text Solution

    |

  3. If underset (xrarr0)"lim"(cosx+asinbx)^(1/x)=e^(2) then the possible v...

    Text Solution

    |

  4. underset(x to 0)(Lt) (sqrt(1 - cos 2 x))/(sqrt(2)x) =

    Text Solution

    |

  5. lim(x to 2^+) (([x]^(3))/(3) - [(x)/(3)]^(3)) is where [x] represents ...

    Text Solution

    |

  6. The value of lim(x to 0) ((4^(x) - 1)^(3))/("sin"(x)/(4) log (1 + (x^...

    Text Solution

    |

  7. If f(x)= {:{((x^(2) + 3x+p)/(2(x^(2)-1)) , xne 1),(5/4, x = 1):} is co...

    Text Solution

    |

  8. In order that the function f(x)=(x+1)^(cotx) is continuous at x = 0, f...

    Text Solution

    |

  9. The number of points at which the function f(x) = 1/ (log |2x|) is di...

    Text Solution

    |

  10. If f(x)={:{(xe^(-(1/(|x|) + 1/x)), x ne 0),(0 , x =0 ):} then f(x) is

    Text Solution

    |

  11. The set of points where f(x)=x/(1+|x|) is differentiable is

    Text Solution

    |

  12. The function |x^2 - 3x+2| + cos |x| is not differentiableat x=

    Text Solution

    |

  13. At x = 0 , the function y = e^(-|x|) is

    Text Solution

    |

  14. Let f(x) = lambda + mu|x|+nu|x|^2, where lambda,mu, nu in R, then f'(0...

    Text Solution

    |

  15. If {x} denotes the fractional part of x, then underset(x to 0)(lim) ({...

    Text Solution

    |

  16. Let f(x) = [x] , g(x)= |x| and f{g(x)} = h(x) ,where [.] is the gre...

    Text Solution

    |

  17. A function f is defined by f(x^(2) ) = x^(3) AA x gt 0 then f(4) equ...

    Text Solution

    |

  18. If 3sin(x y)+4cos(x y)=5 , then (dy)/(dx)= (a) y/x (b) (3sin(x y)+4...

    Text Solution

    |

  19. Let f(x) = maximum {4, 1 + x^(2), x^(2) -1}, AA x in R. Then, the tota...

    Text Solution

    |

  20. Let g(x) be the inverse of f(x) and f'(x)=1/(1+x^(3)).Find g'(x) in te...

    Text Solution

    |