Home
Class 12
MATHS
If f(x)= {:{((x^(2) + 3x+p)/(2(x^(2)-1))...

If `f(x)= {:{((x^(2) + 3x+p)/(2(x^(2)-1)) , xne 1),(5/4, x = 1):}` is continuous at x =1 then

A

p =2

B

p=0

C

p=-4

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To determine the value of \( p \) such that the function \[ f(x) = \begin{cases} \frac{x^2 + 3x + p}{2(x^2 - 1)} & \text{if } x \neq 1 \\ \frac{5}{4} & \text{if } x = 1 \end{cases} \] is continuous at \( x = 1 \), we need to ensure that \[ \lim_{x \to 1} f(x) = f(1) = \frac{5}{4}. \] ### Step 1: Find the limit as \( x \) approaches 1 We first find the limit of \( f(x) \) as \( x \) approaches 1: \[ \lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{x^2 + 3x + p}{2(x^2 - 1)}. \] ### Step 2: Simplify the denominator The denominator can be factored: \[ 2(x^2 - 1) = 2(x - 1)(x + 1). \] ### Step 3: Substitute \( x = 1 \) into the numerator Now we substitute \( x = 1 \) into the numerator: \[ x^2 + 3x + p = 1^2 + 3(1) + p = 1 + 3 + p = 4 + p. \] ### Step 4: Set up the limit expression Thus, we have: \[ \lim_{x \to 1} f(x) = \frac{4 + p}{2(1 - 1)(1 + 1)} = \frac{4 + p}{0}. \] Since the limit must exist, the numerator must also equal zero when \( x = 1 \): \[ 4 + p = 0. \] ### Step 5: Solve for \( p \) Solving for \( p \): \[ p = -4. \] ### Step 6: Verify the limit Now we can verify that with \( p = -4 \), the limit is: \[ \lim_{x \to 1} f(x) = \frac{4 - 4}{2(0)(2)} = \frac{0}{0}, \] which is an indeterminate form. We can apply L'Hôpital's Rule or factor the numerator. ### Step 7: Factor the numerator The numerator \( x^2 + 3x - 4 \) can be factored as: \[ (x - 1)(x + 4). \] Thus, \[ f(x) = \frac{(x - 1)(x + 4)}{2(x - 1)(x + 1)} \quad \text{for } x \neq 1. \] ### Step 8: Cancel the common factor Canceling \( (x - 1) \): \[ f(x) = \frac{x + 4}{2(x + 1)} \quad \text{for } x \neq 1. \] ### Step 9: Evaluate the limit again Now, we can find the limit as \( x \) approaches 1: \[ \lim_{x \to 1} f(x) = \frac{1 + 4}{2(1 + 1)} = \frac{5}{4}. \] ### Conclusion Since \[ \lim_{x \to 1} f(x) = \frac{5}{4} = f(1), \] the function is continuous at \( x = 1 \) when \( p = -4 \). Thus, the value of \( p \) is \[ \boxed{-4}. \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise Section - C ( More than one options are correct )|5 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise Section - D|6 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise Assignment ( section -A)|61 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J ( Aakash Challengers Questions )|16 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J|12 Videos

Similar Questions

Explore conceptually related problems

If the function f(x) ={:{((3x^3-2x^2-1)/(x-1)", "x ne 1),(" "K", " x= 1):}, is continuous at x=1,find the value of k.

The value of k for which f(x)={{:(,(x^(2^(32))-2^(32)x+4^(16)-1)/((x-1)^(2)),x ne 1),(,k,x=1):} is continuous at x=1, is

If the function f(x), defined as f(x)={{:((a(1-xsinx)+b cosx+5)/(x^(2)),":", xne0),(3,":",x=0):} is continuous at x=0 , then the value of (b^(4)+a)/(5+a) is equal to

f (x) = {{:((|x^(2)- x|)/(x^(2) - x),xne 0"," 1),(1",", x = 0),(-1",", x = 0 ):} is continuose for all :

Find the value of f(1) that the function f(x)= (9(x^(2/3)-2x^(1/3)+1))/((x-1)^(2)), x ne 1 is continuous at x =1

Find the value of k , so that the function f(x) = {(kx^2 + 5, if x le 1), (2, if x gt 1):} is continuous at x = 1

Find the value of k, so that the function f(x) = {(kx^2 + 5, if x le 1), (2, if x gt 1):} is continuous at x = 1

A function f(x) is defined by, f(x) = {{:(([x^(2)]-1)/(x^(2)-1)",","for",x^(2) ne 1),(0",","for",x^(2) = 1):} Discuss the continuity of f(x) at x = 1.

The value of k for which f(x)={{:(,[1+x(e^(-1//x^(2)))sin(1/(x^(4)))]^(e^(1//x^(2))),x ne 0),(,k,x=0):} is continuous at x=0, is

Let f(x)={{:(((1-cosx)/((2pi-x)^(2)))((sin^(2)x)/(log(1+4pi^(2)-4pix+x^(2)))),:,xne2pi),(" "lambda,:,x=2pi):} is continuous at x=2pi , then the value of lambda is equal to

AAKASH INSTITUTE ENGLISH-CONTINUITY AND DIFFERENTIABILITY-Section -B
  1. lim(x->0)((4^x+9^x)/2)^(1/x)

    Text Solution

    |

  2. If underset (xrarr0)"lim"(cosx+asinbx)^(1/x)=e^(2) then the possible v...

    Text Solution

    |

  3. underset(x to 0)(Lt) (sqrt(1 - cos 2 x))/(sqrt(2)x) =

    Text Solution

    |

  4. lim(x to 2^+) (([x]^(3))/(3) - [(x)/(3)]^(3)) is where [x] represents ...

    Text Solution

    |

  5. The value of lim(x to 0) ((4^(x) - 1)^(3))/("sin"(x)/(4) log (1 + (x^...

    Text Solution

    |

  6. If f(x)= {:{((x^(2) + 3x+p)/(2(x^(2)-1)) , xne 1),(5/4, x = 1):} is co...

    Text Solution

    |

  7. In order that the function f(x)=(x+1)^(cotx) is continuous at x = 0, f...

    Text Solution

    |

  8. The number of points at which the function f(x) = 1/ (log |2x|) is di...

    Text Solution

    |

  9. If f(x)={:{(xe^(-(1/(|x|) + 1/x)), x ne 0),(0 , x =0 ):} then f(x) is

    Text Solution

    |

  10. The set of points where f(x)=x/(1+|x|) is differentiable is

    Text Solution

    |

  11. The function |x^2 - 3x+2| + cos |x| is not differentiableat x=

    Text Solution

    |

  12. At x = 0 , the function y = e^(-|x|) is

    Text Solution

    |

  13. Let f(x) = lambda + mu|x|+nu|x|^2, where lambda,mu, nu in R, then f'(0...

    Text Solution

    |

  14. If {x} denotes the fractional part of x, then underset(x to 0)(lim) ({...

    Text Solution

    |

  15. Let f(x) = [x] , g(x)= |x| and f{g(x)} = h(x) ,where [.] is the gre...

    Text Solution

    |

  16. A function f is defined by f(x^(2) ) = x^(3) AA x gt 0 then f(4) equ...

    Text Solution

    |

  17. If 3sin(x y)+4cos(x y)=5 , then (dy)/(dx)= (a) y/x (b) (3sin(x y)+4...

    Text Solution

    |

  18. Let f(x) = maximum {4, 1 + x^(2), x^(2) -1}, AA x in R. Then, the tota...

    Text Solution

    |

  19. Let g(x) be the inverse of f(x) and f'(x)=1/(1+x^(3)).Find g'(x) in te...

    Text Solution

    |

  20. If f is a real- valued differentiable function satisfying |f(x) - f(y)...

    Text Solution

    |