Home
Class 12
MATHS
If f(x)={:{(xe^(-(1/(|x|) + 1/x)), x ne ...

If `f(x)={:{(xe^(-(1/(|x|) + 1/x)), x ne 0),(0 , x =0 ):}` then f(x) is

A

(a)Continuous for all x but not differentiable

B

(b)Neither differentiable nor continuous

C

(c)Discontinuous everywhere

D

(d)Continuous as well as differentiable for all x

Text Solution

AI Generated Solution

The correct Answer is:
To determine the properties of the function \( f(x) \) defined as: \[ f(x) = \begin{cases} x e^{-\left(\frac{1}{|x|} + \frac{1}{x}\right)}, & x \neq 0 \\ 0, & x = 0 \end{cases} \] we need to check if the function is continuous and differentiable at \( x = 0 \). ### Step 1: Check Continuity at \( x = 0 \) To check if \( f(x) \) is continuous at \( x = 0 \), we need to verify that: \[ \lim_{x \to 0} f(x) = f(0) \] Since \( f(0) = 0 \), we need to compute \( \lim_{x \to 0} f(x) \). For \( x \neq 0 \): \[ f(x) = x e^{-\left(\frac{1}{|x|} + \frac{1}{x}\right)} \] ### Step 2: Evaluate the Limit as \( x \to 0 \) We can analyze the limit from both sides (as \( x \to 0^+ \) and \( x \to 0^- \)). **For \( x \to 0^+ \):** \[ f(x) = x e^{-\left(\frac{1}{x} + \frac{1}{x}\right)} = x e^{-\frac{2}{x}} \] As \( x \to 0^+ \), \( e^{-\frac{2}{x}} \) approaches \( 0 \) much faster than \( x \) approaches \( 0 \). Therefore: \[ \lim_{x \to 0^+} f(x) = 0 \] **For \( x \to 0^- \):** \[ f(x) = x e^{-\left(-\frac{1}{x} + \frac{1}{|x|}\right)} = x e^{-\left(-\frac{1}{x} + \frac{1}{-x}\right)} = x e^{-\left(-\frac{2}{x}\right)} = x e^{\frac{2}{x}} \] As \( x \to 0^- \), \( e^{\frac{2}{x}} \) approaches \( \infty \), but since \( x \) is negative, \( f(x) \) approaches \( 0 \): \[ \lim_{x \to 0^-} f(x) = 0 \] ### Step 3: Conclusion on Continuity Since both one-sided limits equal \( 0 \): \[ \lim_{x \to 0} f(x) = 0 = f(0) \] Thus, \( f(x) \) is continuous at \( x = 0 \). ### Step 4: Check Differentiability at \( x = 0 \) To check differentiability at \( x = 0 \), we need to find the left-hand derivative and right-hand derivative. **Left-hand derivative:** \[ f'(0^-) = \lim_{h \to 0^-} \frac{f(h) - f(0)}{h} = \lim_{h \to 0^-} \frac{h e^{\frac{2}{h}} - 0}{h} = \lim_{h \to 0^-} e^{\frac{2}{h}} = -\infty \] **Right-hand derivative:** \[ f'(0^+) = \lim_{h \to 0^+} \frac{f(h) - f(0)}{h} = \lim_{h \to 0^+} \frac{h e^{-\frac{2}{h}} - 0}{h} = \lim_{h \to 0^+} e^{-\frac{2}{h}} = 0 \] ### Step 5: Conclusion on Differentiability Since the left-hand derivative does not equal the right-hand derivative: \[ f'(0^-) \neq f'(0^+) \] Thus, \( f(x) \) is not differentiable at \( x = 0 \). ### Final Conclusion The function \( f(x) \) is continuous everywhere but not differentiable at \( x = 0 \). ### Answer \( f(x) \) is continuous for all \( x \) but not differentiable at \( x = 0 \).
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise Section - C ( More than one options are correct )|5 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise Section - D|6 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise Assignment ( section -A)|61 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J ( Aakash Challengers Questions )|16 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - J|12 Videos

Similar Questions

Explore conceptually related problems

If f(x) = {{:(1/(1+e^(1//x)), x ne 0),(0,x=0):} then f(x) is

Let f(x) = {:{ (x sin""(1/x) , x ne 0) , ( k , x = 0):} then f(x) is continuous at x = 0 if

f(x)={{:(e^(1//x)/(1+e^(1//x)),if x ne 0),(0,if x = 0):} at x = 0

Let f(x)= {:{((3|x|+4tanx)/x, x ne 0),(k , x =0):} Then f(x) is continuous at x = 0 for ,

Check the continuity of f(x)={{:(e^(1//x)/(1+e^(1//x)),if x ne 0),(0,if x = 0):}at x = 0

If f(x)={{:(,x^(2)sin((1)/(x)),x ne 0),(,0, x=0):} , then

f(x) ={{:( xe ^(-((1)/(x)+(1)/(|x|))), x ne 0),( a , x=0):} the value of a , such that f(x) is differentiable at x=0, is equal to

If f(x) = {{:((1)/(e^(1//x))",",x ne 0),(0",",x = 0):} then

Test the continnuity of f(x) at x=0 if f(x) ={{:((x+1)^(2-((1)/(|x|)+(1)/(x))), x ne 0 ),( 1,x = 0):}.

If f(x)={{:(x^(p+1)cos.(1)/(x)":", x ne 0),(0":", x=0):} then at x = 0 the function f(x) is

AAKASH INSTITUTE ENGLISH-CONTINUITY AND DIFFERENTIABILITY-Section -B
  1. lim(x->0)((4^x+9^x)/2)^(1/x)

    Text Solution

    |

  2. If underset (xrarr0)"lim"(cosx+asinbx)^(1/x)=e^(2) then the possible v...

    Text Solution

    |

  3. underset(x to 0)(Lt) (sqrt(1 - cos 2 x))/(sqrt(2)x) =

    Text Solution

    |

  4. lim(x to 2^+) (([x]^(3))/(3) - [(x)/(3)]^(3)) is where [x] represents ...

    Text Solution

    |

  5. The value of lim(x to 0) ((4^(x) - 1)^(3))/("sin"(x)/(4) log (1 + (x^...

    Text Solution

    |

  6. If f(x)= {:{((x^(2) + 3x+p)/(2(x^(2)-1)) , xne 1),(5/4, x = 1):} is co...

    Text Solution

    |

  7. In order that the function f(x)=(x+1)^(cotx) is continuous at x = 0, f...

    Text Solution

    |

  8. The number of points at which the function f(x) = 1/ (log |2x|) is di...

    Text Solution

    |

  9. If f(x)={:{(xe^(-(1/(|x|) + 1/x)), x ne 0),(0 , x =0 ):} then f(x) is

    Text Solution

    |

  10. The set of points where f(x)=x/(1+|x|) is differentiable is

    Text Solution

    |

  11. The function |x^2 - 3x+2| + cos |x| is not differentiableat x=

    Text Solution

    |

  12. At x = 0 , the function y = e^(-|x|) is

    Text Solution

    |

  13. Let f(x) = lambda + mu|x|+nu|x|^2, where lambda,mu, nu in R, then f'(0...

    Text Solution

    |

  14. If {x} denotes the fractional part of x, then underset(x to 0)(lim) ({...

    Text Solution

    |

  15. Let f(x) = [x] , g(x)= |x| and f{g(x)} = h(x) ,where [.] is the gre...

    Text Solution

    |

  16. A function f is defined by f(x^(2) ) = x^(3) AA x gt 0 then f(4) equ...

    Text Solution

    |

  17. If 3sin(x y)+4cos(x y)=5 , then (dy)/(dx)= (a) y/x (b) (3sin(x y)+4...

    Text Solution

    |

  18. Let f(x) = maximum {4, 1 + x^(2), x^(2) -1}, AA x in R. Then, the tota...

    Text Solution

    |

  19. Let g(x) be the inverse of f(x) and f'(x)=1/(1+x^(3)).Find g'(x) in te...

    Text Solution

    |

  20. If f is a real- valued differentiable function satisfying |f(x) - f(y)...

    Text Solution

    |