Home
Class 9
MATHS
Solve: 3 (2x+ y ) = 7xy 3(x+ 3y ) ...

Solve: ` 3 (2x+ y ) = 7xy `
` 3(x+ 3y ) = 11xy , x ne 0 , y ne 0 `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equations: 1. **Equations Given:** \[ 3(2x + y) = 7xy \quad \text{(Equation 1)} \] \[ 3(x + 3y) = 11xy \quad \text{(Equation 2)} \] 2. **Rearranging Equation 1:** \[ 3(2x + y) - 7xy = 0 \] This can be rewritten as: \[ 6x + 3y - 7xy = 0 \quad \text{(Equation 3)} \] 3. **Rearranging Equation 2:** \[ 3(x + 3y) - 11xy = 0 \] This can be rewritten as: \[ 3x + 9y - 11xy = 0 \quad \text{(Equation 4)} \] 4. **Equating Right-Hand Sides of Equations 3 and 4:** Since both equations equal zero, we can set the left-hand sides equal to each other: \[ 6x + 3y = 7xy \quad \text{and} \quad 3x + 9y = 11xy \] 5. **Cross-Multiplying:** From the equations: \[ \frac{6x + 3y}{7} = xy \quad \text{and} \quad \frac{3x + 9y}{11} = xy \] We can set them equal: \[ \frac{6x + 3y}{7} = \frac{3x + 9y}{11} \] 6. **Cross-Multiplying Again:** \[ 11(6x + 3y) = 7(3x + 9y) \] Expanding both sides: \[ 66x + 33y = 21x + 63y \] 7. **Rearranging:** \[ 66x - 21x = 63y - 33y \] Simplifying gives: \[ 45x = 30y \] 8. **Finding Relationship Between x and y:** Dividing both sides by 15: \[ 3x = 2y \quad \Rightarrow \quad x = \frac{2}{3}y \quad \text{(Equation 5)} \] 9. **Substituting x in Equation 1:** Substitute \( x = \frac{2}{3}y \) into Equation 1: \[ 3(2(\frac{2}{3}y) + y) = 7(\frac{2}{3}y)y \] Simplifying: \[ 3(\frac{4}{3}y + y) = \frac{14}{3}y^2 \] \[ 3(\frac{7}{3}y) = \frac{14}{3}y^2 \] \[ 7y = \frac{14}{3}y^2 \] 10. **Rearranging to Form a Quadratic Equation:** \[ 14y^2 - 21y = 0 \] Factoring out \( y \): \[ y(14y - 21) = 0 \] 11. **Finding Values of y:** Since \( y \neq 0 \): \[ 14y - 21 = 0 \quad \Rightarrow \quad 14y = 21 \quad \Rightarrow \quad y = \frac{21}{14} = \frac{3}{2} \] 12. **Finding Value of x:** Substitute \( y = \frac{3}{2} \) back into Equation 5: \[ x = \frac{2}{3}(\frac{3}{2}) = 1 \] **Final Values:** \[ x = 1, \quad y = \frac{3}{2} \] ---
Promotional Banner

Topper's Solved these Questions

  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Indices|14 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise logrithms|20 Videos
  • CHAPTERWISE REVISION (STAGE 1)

    ICSE|Exercise Factorisation |26 Videos
  • CHAPTER REVISION (STAGE 2)

    ICSE|Exercise DISTANCE FORMULA |12 Videos
  • CHAPTERWISE REVISION (STAGE 3)

    ICSE|Exercise DISTANCE FORMULA |11 Videos

Similar Questions

Explore conceptually related problems

{:(2x + y = (7xy)/(3)),(x + 3y = (11xy)/(3)):}

Solve for x and y : (2)/(x) + (3)/(y ) = 13, (5)/(x) - ( 4)/( y) = - 2 ( x ne 0 and y ne 0 )

Solve for x and y : (2)/(x) + (3)/(y ) = 13, (5)/(x) - ( 4)/( y) = - 2 ( x ne 0 and y ne 0 )

Solve for x and y : (2)/(x) + (3)/(y ) = 13, (5)/(x) - ( 4)/( y) = - 2 ( x ne 0 and y ne 0 )

The total number of matrices A = [{:(0, 2y, 1), (2x, y, -1), (2x, -y, 1):}] (x, y in R, x ne y) for which A^(T)A = 3I_(3) is

Divide : 12x^(2) + 7xy - 12y^(2) by 3x + 4y

If x- y = 7 and x^(3) - y^(3) = 133. find : xy

The equation of the ellipse whose focus is (1, -1) , directrix is the line x-y-3=0 and eccentricity is 1/2 , is: (A) 7x^2 + 2xy + 7y^2 + 7 = 0 (B) 7x^2 + 2xy+7y^2 + 10x - 10y - 7 = 0 (C) 7x^2 + 2xy + 7y^2 - 10x + 10y + 7 = 0 (D) none of these

Given that x:y = 2:7, find 3x + 5y: 2x + y.

If x^(3) + y^(3) + z^(3) = 3xyz and x + y + z = 0 , find the value of : ((x+y)^(2))/(xy) + ((y+z)^(2))/(yz) + ((z+x)^(2))/(zx)