Home
Class 8
MATHS
Multiply : a^(2), ab and b^(2)...

Multiply :
`a^(2), ab` and `b^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of multiplying \( a^2 \), \( ab \), and \( b^2 \), we can follow these steps: ### Step-by-Step Solution: 1. **Write down the expression**: We need to multiply the three terms together: \[ a^2 \cdot ab \cdot b^2 \] 2. **Group the terms**: We can rearrange the multiplication for clarity: \[ (a^2 \cdot ab) \cdot b^2 \] 3. **Multiply the first two terms**: Start by multiplying \( a^2 \) and \( ab \): - When multiplying terms with the same base, we add the exponents: \[ a^2 \cdot ab = a^{2+1} \cdot b^{1} = a^3 \cdot b \] 4. **Now multiply the result with \( b^2 \)**: Now we take \( a^3 \cdot b \) and multiply it by \( b^2 \): \[ a^3 \cdot b \cdot b^2 \] - Again, we add the exponents for \( b \): \[ b^{1+2} = b^3 \] 5. **Combine the results**: Now we can combine the results: \[ a^3 \cdot b^3 \] 6. **Final answer**: Thus, the final result of multiplying \( a^2 \), \( ab \), and \( b^2 \) is: \[ a^3 b^3 \] ### Final Result: \[ a^3 b^3 \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSIONS

    ICSE|Exercise Exercise 11 (D)|21 Videos
  • ALGEBRAIC EXPRESSIONS

    ICSE|Exercise Exercise 11(E)|15 Videos
  • ALGEBRAIC EXPRESSIONS

    ICSE|Exercise Exercise 11 (B)|35 Videos
  • AREA OF A TRAPEZIUM AND A POLYGON

    ICSE|Exercise EXERCISE 20(D)|21 Videos

Similar Questions

Explore conceptually related problems

Multiply : abx, -3a^(2)x and 7b^(2)x^(3)

Multiply : 8ab^(2) by -4a^(3)b^(4)

Multiply : 1/2 a^(2)b - 2/3 ab^(2) + 5 " by " 6abc

Multiply : 2 1/3 a^(2) b and 2/7 a^(3)b^(2)

Multiply 8a^(2)b - 3ab + 5b^(2) by 6ab.

Multiply : 2a^(3) - 3a^(2)b and -(1)/(2)ab^(2)

Multiply (7a^(2) b - 5ab^(2) +3ab) " by " (- 2ab)

Multiply 6a^(2)b^(3) and -4a^(3)b^(4) .

Multiply : 3a^(2)b - 5ab" by " 3ab

Multiply : -3bx, -5xy and -7b^(3)y^(2)