Home
Class 8
MATHS
Multiply : abx, -3a^(2)x and 7b^(2)x^(...

Multiply :
`abx, -3a^(2)x` and `7b^(2)x^(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of multiplying the expressions \( abx \), \( -3a^2x \), and \( 7b^2x^3 \), we will follow these steps: ### Step 1: Write down the expressions to be multiplied We have: \[ abx \times (-3a^2x) \times (7b^2x^3) \] ### Step 2: Multiply the first two expressions First, we multiply \( abx \) and \( -3a^2x \): \[ abx \times (-3a^2x) = a \times b \times (-3) \times a^2 \times x \times x \] Now, we combine the like terms: - The coefficients: \( 1 \times (-3) = -3 \) - The \( a \) terms: \( a \times a^2 = a^{1+2} = a^3 \) - The \( x \) terms: \( x \times x = x^{1+1} = x^2 \) So, we have: \[ -3a^3bx^2 \] ### Step 3: Multiply the result with the third expression Now, we multiply \( -3a^3bx^2 \) with \( 7b^2x^3 \): \[ (-3a^3bx^2) \times (7b^2x^3) = (-3) \times 7 \times a^3 \times b \times b^2 \times x^2 \times x^3 \] Again, we combine the like terms: - The coefficients: \( -3 \times 7 = -21 \) - The \( a \) terms: \( a^3 \) (no other \( a \) terms to combine) - The \( b \) terms: \( b \times b^2 = b^{1+2} = b^3 \) - The \( x \) terms: \( x^2 \times x^3 = x^{2+3} = x^5 \) So, we have: \[ -21a^3b^3x^5 \] ### Final Result The final result of multiplying \( abx \), \( -3a^2x \), and \( 7b^2x^3 \) is: \[ \boxed{-21a^3b^3x^5} \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSIONS

    ICSE|Exercise Exercise 11 (D)|21 Videos
  • ALGEBRAIC EXPRESSIONS

    ICSE|Exercise Exercise 11(E)|15 Videos
  • ALGEBRAIC EXPRESSIONS

    ICSE|Exercise Exercise 11 (B)|35 Videos
  • AREA OF A TRAPEZIUM AND A POLYGON

    ICSE|Exercise EXERCISE 20(D)|21 Videos

Similar Questions

Explore conceptually related problems

Multiply : -3bx, -5xy and -7b^(3)y^(2)

Multiply : 2 1/3 a^(2) b and 2/7 a^(3)b^(2)

Multiply : 2a^(3) - 3a^(2)b and -(1)/(2)ab^(2)

Multiply : 2x - 3y by 6

Multiply : -2x^(2) with 3xy

Multiply: 2x by (3x+5y)

Multiply : (i) (3)/(-2) "and" (-7)/(3)

Multiply : 3/7 x^(2) y^(3) and -14/15xy^(2)

Multiply : -(2)/(3)a^(7)b^(2) and -(9)/(4)ab^(5)

Multiply : -2x xx 3y" by " x^(2)