Home
Class 8
MATHS
Multiply : -(3)/(2)x^(5)y^(3) and (4)/...

Multiply :
`-(3)/(2)x^(5)y^(3)` and `(4)/(9)a^(2)x^(3)y`

Text Solution

AI Generated Solution

The correct Answer is:
To multiply the expressions \(-\frac{3}{2}x^{5}y^{3}\) and \(\frac{4}{9}a^{2}x^{3}y\), we will follow these steps: ### Step 1: Write the expressions together We start by writing the two expressions that we need to multiply: \[ -\frac{3}{2}x^{5}y^{3} \times \frac{4}{9}a^{2}x^{3}y \] ### Step 2: Multiply the coefficients Next, we multiply the numerical coefficients: \[ -\frac{3}{2} \times \frac{4}{9} \] Calculating this gives: \[ -\frac{3 \times 4}{2 \times 9} = -\frac{12}{18} = -\frac{2}{3} \] ### Step 3: Multiply the variables Now we will multiply the variable parts. We will combine the \(x\) terms and the \(y\) terms: - For \(x\): \[ x^{5} \times x^{3} = x^{5+3} = x^{8} \] - For \(y\): \[ y^{3} \times y = y^{3+1} = y^{4} \] ### Step 4: Combine all parts Now we can combine all the parts together: \[ -\frac{2}{3}a^{2}x^{8}y^{4} \] ### Final Answer Thus, the final result of the multiplication is: \[ -\frac{2}{3}a^{2}x^{8}y^{4} \] ---
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSIONS

    ICSE|Exercise Exercise 11 (D)|21 Videos
  • ALGEBRAIC EXPRESSIONS

    ICSE|Exercise Exercise 11(E)|15 Videos
  • ALGEBRAIC EXPRESSIONS

    ICSE|Exercise Exercise 11 (B)|35 Videos
  • AREA OF A TRAPEZIUM AND A POLYGON

    ICSE|Exercise EXERCISE 20(D)|21 Videos

Similar Questions

Explore conceptually related problems

Multiply : 3 - (2)/(3)xy + (5)/(7)xy^(2) - (16)/(21)x^(2)y by -21 x^(2)y^(2)

Multiply: 2x by (3x+5y)

Multiply : 2x - 3y by 6

Multiply: (2x^2-3x+5)b y(5x+2)dot

Multiply: (7x y+5y) by 3x y

Multiply : -2x xx 3y" by " x^(2)

Multiply : 2y - 4y^(3) + 6y^(5) by y^(2) + y - 3

Multiply: (i) (2x^2-1)b y\ (4x^3+5x^2) (ii) (2x y+3y^2)(3y^2-2)

Multiply: (3x-4/5y^2x) b y 1/2x ydot

Multiply: (2x^2-4x+5)\ b y\ (x^2+3x-7)