Home
Class 8
MATHS
Multiply : 2a^(3) - 3a^(2)b and -(1)/(...

Multiply :
`2a^(3) - 3a^(2)b` and `-(1)/(2)ab^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To multiply the expressions \(2a^3 - 3a^2b\) and \(-\frac{1}{2}ab^2\), we can follow these steps: ### Step 1: Rewrite the expression We start by rewriting the multiplication: \[ (2a^3 - 3a^2b) \cdot \left(-\frac{1}{2}ab^2\right) \] ### Step 2: Distribute the terms Next, we distribute \(-\frac{1}{2}ab^2\) to each term in the first expression: \[ = 2a^3 \cdot \left(-\frac{1}{2}ab^2\right) + (-3a^2b) \cdot \left(-\frac{1}{2}ab^2\right) \] ### Step 3: Multiply the first term Now, we calculate the first term: \[ 2a^3 \cdot \left(-\frac{1}{2}ab^2\right) = -\frac{2}{2} a^{3+1} b^2 = -a^4b^2 \] ### Step 4: Multiply the second term Next, we calculate the second term: \[ (-3a^2b) \cdot \left(-\frac{1}{2}ab^2\right) = \frac{3}{2} a^{2+1} b^{1+2} = \frac{3}{2} a^3b^3 \] ### Step 5: Combine the results Now, we combine the results from both multiplications: \[ -a^4b^2 + \frac{3}{2}a^3b^3 \] ### Step 6: Factor out the negative sign Finally, we can factor out the negative sign: \[ = -a^4b^2 + \frac{3}{2}a^3b^3 \] ### Final Expression Thus, the final expression is: \[ \frac{3}{2}a^3b^3 - a^4b^2 \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSIONS

    ICSE|Exercise Exercise 11 (D)|21 Videos
  • ALGEBRAIC EXPRESSIONS

    ICSE|Exercise Exercise 11(E)|15 Videos
  • ALGEBRAIC EXPRESSIONS

    ICSE|Exercise Exercise 11 (B)|35 Videos
  • AREA OF A TRAPEZIUM AND A POLYGON

    ICSE|Exercise EXERCISE 20(D)|21 Videos

Similar Questions

Explore conceptually related problems

Multiply : -(2)/(3)a^(7)b^(2) and -(9)/(4)ab^(5)

Multiply : a^(2), ab and b^(2)

Multiply : 2a^(2) - 5a - 4 and -3a

Multiply : abx, -3a^(2)x and 7b^(2)x^(3)

Multiply : 2 1/3 a^(2) b and 2/7 a^(3)b^(2)

Multiply : 3a^(2)b - 5ab" by " 3ab

Multiply : (ab - 1)(3-2ab)

Multiply : 8ab^(2) by -4a^(3)b^(4)

Multiply 8a^(2)b - 3ab + 5b^(2) by 6ab.

Multiply: c. 5 (1)/(3) xx 2