Home
Class 8
MATHS
Multiply : 2x + (1)/(2)y and 2x - (1)/...

Multiply :
`2x + (1)/(2)y` and `2x - (1)/(2)y`

Text Solution

AI Generated Solution

The correct Answer is:
To multiply the expressions \(2x + \frac{1}{2}y\) and \(2x - \frac{1}{2}y\), we can use the distributive property (also known as the FOIL method for binomials). Here’s a step-by-step solution: ### Step 1: Write down the expressions We start with the two expressions: \[ (2x + \frac{1}{2}y)(2x - \frac{1}{2}y) \] ### Step 2: Apply the distributive property We will multiply each term in the first expression by each term in the second expression. 1. **Multiply the first terms**: \[ 2x \cdot 2x = 4x^2 \] 2. **Multiply the outer terms**: \[ 2x \cdot -\frac{1}{2}y = -x y \] 3. **Multiply the inner terms**: \[ \frac{1}{2}y \cdot 2x = xy \] 4. **Multiply the last terms**: \[ \frac{1}{2}y \cdot -\frac{1}{2}y = -\frac{1}{4}y^2 \] ### Step 3: Combine all the products Now we combine all the results from the multiplications: \[ 4x^2 - xy + xy - \frac{1}{4}y^2 \] ### Step 4: Simplify the expression Notice that \(-xy\) and \(xy\) cancel each other out: \[ 4x^2 - \frac{1}{4}y^2 \] ### Final Answer Thus, the final result of multiplying the two expressions is: \[ 4x^2 - \frac{1}{4}y^2 \] ---
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSIONS

    ICSE|Exercise Exercise 11 (D)|21 Videos
  • ALGEBRAIC EXPRESSIONS

    ICSE|Exercise Exercise 11(E)|15 Videos
  • ALGEBRAIC EXPRESSIONS

    ICSE|Exercise Exercise 11 (B)|35 Videos
  • AREA OF A TRAPEZIUM AND A POLYGON

    ICSE|Exercise EXERCISE 20(D)|21 Videos

Similar Questions

Explore conceptually related problems

Multiply: 2x by (3x+5y)

Multiply : 2x - 3y by 6

Multiply : -2x xx 3y" by " x^(2)

Multiply: (3x-4/5y^2x) b y 1/2x ydot

Multiply and then verify : -3x^(2)y^(2) and (x-2y) for x = 1 and y = 2.

Multiply 3x^(2)y and -2xy^(2) . Verify the product for x = 1 and y = 2.

Multiply (i) (x-4) and (2x+3) (ii) (x-y) and (3x+5y)

Multiply: (i) ( a/7+(a^2)/9)b y\ (b/2-(b^2)/3) (ii) (3x^2y-5x y^2)b y\ (1/5x^2+1/3y^2)

2x - y gt 1, 2y - x gt 1

Multiply -3/2x^2y^2\ by \ (2x-y) and verify the answer for x=1\ and \ y=2.