Home
Class 8
MATHS
Multiply : 5x^(2) - 8xy + 6y^(2) - 3 ...

Multiply :
`5x^(2) - 8xy + 6y^(2) - 3` by `-3xy`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of multiplying the expression \(5x^2 - 8xy + 6y^2 - 3\) by \(-3xy\), we will follow these steps: ### Step 1: Distribute \(-3xy\) to each term in the expression We will multiply \(-3xy\) with each term of the expression \(5x^2 - 8xy + 6y^2 - 3\). ### Step 2: Multiply the first term Multiply \(-3xy\) by \(5x^2\): \[ -3xy \cdot 5x^2 = -15x^{2+1}y = -15x^3y \] ### Step 3: Multiply the second term Multiply \(-3xy\) by \(-8xy\): \[ -3xy \cdot (-8xy) = 24x^{1+1}y^{1+1} = 24x^2y^2 \] ### Step 4: Multiply the third term Multiply \(-3xy\) by \(6y^2\): \[ -3xy \cdot 6y^2 = -18xy^{1+2} = -18xy^3 \] ### Step 5: Multiply the fourth term Multiply \(-3xy\) by \(-3\): \[ -3xy \cdot (-3) = 9xy \] ### Step 6: Combine all the results Now we combine all the terms we obtained from the multiplication: \[ -15x^3y + 24x^2y^2 - 18xy^3 + 9xy \] ### Final Answer Thus, the final expression after multiplying is: \[ -15x^3y + 24x^2y^2 - 18xy^3 + 9xy \] ---
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSIONS

    ICSE|Exercise Exercise 11 (D)|21 Videos
  • ALGEBRAIC EXPRESSIONS

    ICSE|Exercise Exercise 11(E)|15 Videos
  • ALGEBRAIC EXPRESSIONS

    ICSE|Exercise Exercise 11 (B)|35 Videos
  • AREA OF A TRAPEZIUM AND A POLYGON

    ICSE|Exercise EXERCISE 20(D)|21 Videos

Similar Questions

Explore conceptually related problems

Multiply : -2x^(2) with 3xy

Multiply : 3x^(2) y - 7xy^(2) +2xy" by " 4xy

Multiply : -6x^(2) "with " -2xy

Multiply : -3bx, -5xy and -7b^(3)y^(2)

Multiply -5xy^(2), -3x^(2)yz and 8yz^(2) . Verify the result for x = 1, y = 2 and z = 3.

Multiply : 3/7 x^(2) y^(3) and -14/15xy^(2)

Subtract : 5x - 3x^(2) + 8xy from 7x^(2) + 3xy - 4x .

Simplify the following : 3xy^(2) - 5x^(2)y + 7xy - 9xy^(2) - 4xy + 6x^(2)y

Multiply 5xy^(2) xx(3x^(2) +2xy ) " by " 5xy^(2)

Divide : 8x^(2) - 45y^(2) + 18xy by 2x - 3y.