Home
Class 8
MATHS
Multiply : 3 - (2)/(3)xy + (5)/(7)xy^...

Multiply :
`3 - (2)/(3)xy + (5)/(7)xy^(2) - (16)/(21)x^(2)y` by `-21 x^(2)y^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of multiplying the expression \(3 - \frac{2}{3}xy + \frac{5}{7}xy^2 - \frac{16}{21}x^2y\) by \(-21x^2y^2\), we will follow these steps: ### Step 1: Write the expression to be multiplied We start with the expression: \[ 3 - \frac{2}{3}xy + \frac{5}{7}xy^2 - \frac{16}{21}x^2y \] and we will multiply this by \(-21x^2y^2\). ### Step 2: Distribute \(-21x^2y^2\) to each term We will multiply each term in the expression by \(-21x^2y^2\): 1. **First term**: \[ 3 \cdot (-21x^2y^2) = -63x^2y^2 \] 2. **Second term**: \[ -\frac{2}{3}xy \cdot (-21x^2y^2) = \frac{2 \cdot 21}{3} x^{1+2} y^{1+2} = \frac{42}{3} x^3y^3 = 14x^3y^3 \] 3. **Third term**: \[ \frac{5}{7}xy^2 \cdot (-21x^2y^2) = -\frac{5 \cdot 21}{7} x^{1+2} y^{2+2} = -15x^3y^4 \] 4. **Fourth term**: \[ -\frac{16}{21}x^2y \cdot (-21x^2y^2) = \frac{16 \cdot 21}{21} x^{2+2} y^{1+2} = 16x^4y^3 \] ### Step 3: Combine all the terms Now we combine all the results from the multiplications: \[ -63x^2y^2 + 14x^3y^3 - 15x^3y^4 + 16x^4y^3 \] ### Step 4: Write the final answer The final expression after combining all the terms is: \[ -63x^2y^2 + 14x^3y^3 - 15x^3y^4 + 16x^4y^3 \] ### Summary of the final expression: \[ -63x^2y^2 + 14x^3y^3 - 15x^3y^4 + 16x^4y^3 \] ---
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSIONS

    ICSE|Exercise Exercise 11 (D)|21 Videos
  • ALGEBRAIC EXPRESSIONS

    ICSE|Exercise Exercise 11(E)|15 Videos
  • ALGEBRAIC EXPRESSIONS

    ICSE|Exercise Exercise 11 (B)|35 Videos
  • AREA OF A TRAPEZIUM AND A POLYGON

    ICSE|Exercise EXERCISE 20(D)|21 Videos

Similar Questions

Explore conceptually related problems

Multiply : -2x^(2) with 3xy

Multiply : 3/7 x^(2) y^(3) and -14/15xy^(2)

Multiply : 3x^(2) y - 7xy^(2) +2xy" by " 4xy

Multiply : -3bx, -5xy and -7b^(3)y^(2)

Multiply 5xy^(2) xx(3x^(2) +2xy ) " by " 5xy^(2)

Divide : 36x^(2)y^(2) + 42 xy^(3) - 24 x^(3)y^(2) - 12 y^(5) by - 6y^(2)

Multiply : 5x^(2) - 8xy + 6y^(2) - 3 by -3xy

Add : x^(3) - x^(2)y + 5xy^(2) + y^(3) , -x^(3) - 9xy^(2) + y^(3), 3x^(2)y + 9xy^(2)

If x+ y= (7)/(2) and xy= (5)/(2) , find x^(2)- y^(2)

Simplify the following : 3xy^(2) - 5x^(2)y + 7xy - 9xy^(2) - 4xy + 6x^(2)y