Home
Class 8
MATHS
Multiply : 6x^(3) - 5x + 10 by 4 - 3x...

Multiply :
`6x^(3) - 5x + 10` by `4 - 3x^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To multiply the algebraic expressions \(6x^3 - 5x + 10\) and \(4 - 3x^2\), we will follow these steps: ### Step 1: Write down the expressions We have two expressions: 1. \(6x^3 - 5x + 10\) 2. \(4 - 3x^2\) ### Step 2: Distribute each term in the first expression by each term in the second expression We will multiply each term in the first expression by each term in the second expression. #### Multiplying \(6x^3\): - \(6x^3 \cdot 4 = 24x^3\) - \(6x^3 \cdot (-3x^2) = -18x^5\) #### Multiplying \(-5x\): - \(-5x \cdot 4 = -20x\) - \(-5x \cdot (-3x^2) = 15x^3\) #### Multiplying \(10\): - \(10 \cdot 4 = 40\) - \(10 \cdot (-3x^2) = -30x^2\) ### Step 3: Combine all the results Now we combine all the products we calculated: - From \(6x^3\): \(24x^3 - 18x^5\) - From \(-5x\): \(-20x + 15x^3\) - From \(10\): \(40 - 30x^2\) Putting it all together: \[ -18x^5 + (24x^3 + 15x^3) - 30x^2 - 20x + 40 \] ### Step 4: Combine like terms Now we will combine the like terms: - The \(x^5\) term: \(-18x^5\) - The \(x^3\) terms: \(24x^3 + 15x^3 = 39x^3\) - The \(x^2\) term: \(-30x^2\) - The \(x\) term: \(-20x\) - The constant term: \(40\) So, the final expression is: \[ -18x^5 + 39x^3 - 30x^2 - 20x + 40 \] ### Final Answer \[ -18x^5 + 39x^3 - 30x^2 - 20x + 40 \] ---
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSIONS

    ICSE|Exercise Exercise 11 (D)|21 Videos
  • ALGEBRAIC EXPRESSIONS

    ICSE|Exercise Exercise 11(E)|15 Videos
  • ALGEBRAIC EXPRESSIONS

    ICSE|Exercise Exercise 11 (B)|35 Videos
  • AREA OF A TRAPEZIUM AND A POLYGON

    ICSE|Exercise EXERCISE 20(D)|21 Videos

Similar Questions

Explore conceptually related problems

Multiply : 2x - 3y by 6

Multiply : 2x^(2) - 4x + 5 by x^(2) + 3x - 7

Multiply : 5x^(2) - 8xy + 6y^(2) - 3 by -3xy

Multiply: 2x by (3x+5y)

Multiply : 2x " with " 3x

Multiply 2x - 5 " by " 3x+2

Multiply: (3x-4/5y^2x) b y 1/2x ydot

The equation whose roots are multiplied by 3 of those of 2x^(3) - 3x^(2) + 4x - 5 = 0 is

Multiply : -8/5x^2y z^3\ b y\ -3/4x y^2z (ii) 3/(14)x^2y \ by\ 7/2x^4y

Multiply (3x+2y)a n d\ (5x+3y)