Home
Class 8
MATHS
Multiply : 2y - 4y^(3) + 6y^(5) by y^...

Multiply :
`2y - 4y^(3) + 6y^(5)` by `y^(2) + y - 3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of multiplying the algebraic expressions \(2y - 4y^3 + 6y^5\) by \(y^2 + y - 3\), we will follow these steps: ### Step 1: Distribute Each Term We will distribute each term from the first polynomial \(2y - 4y^3 + 6y^5\) to each term in the second polynomial \(y^2 + y - 3\). ### Step 2: Multiply \(2y\) by Each Term - \(2y \cdot y^2 = 2y^3\) - \(2y \cdot y = 2y^2\) - \(2y \cdot (-3) = -6y\) ### Step 3: Multiply \(-4y^3\) by Each Term - \(-4y^3 \cdot y^2 = -4y^5\) - \(-4y^3 \cdot y = -4y^4\) - \(-4y^3 \cdot (-3) = 12y^3\) ### Step 4: Multiply \(6y^5\) by Each Term - \(6y^5 \cdot y^2 = 6y^7\) - \(6y^5 \cdot y = 6y^6\) - \(6y^5 \cdot (-3) = -18y^5\) ### Step 5: Combine All the Results Now we combine all the results from the previous steps: - From \(2y\): \(2y^3 + 2y^2 - 6y\) - From \(-4y^3\): \(-4y^5 - 4y^4 + 12y^3\) - From \(6y^5\): \(6y^7 + 6y^6 - 18y^5\) ### Step 6: Write All Terms Together Combining all terms we have: \[ 6y^7 + 6y^6 + (2y^3 + 12y^3) + (-4y^5 - 18y^5) - 4y^4 + 2y^2 - 6y \] ### Step 7: Combine Like Terms Now we combine like terms: - \(6y^7\) - \(6y^6\) - \( (2y^3 + 12y^3) = 14y^3\) - \( (-4y^5 - 18y^5) = -22y^5\) - \(-4y^4\) - \(2y^2\) - \(-6y\) ### Final Result Arranging in decreasing order of powers: \[ 6y^7 + 6y^6 - 22y^5 - 4y^4 + 14y^3 + 2y^2 - 6y \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSIONS

    ICSE|Exercise Exercise 11 (D)|21 Videos
  • ALGEBRAIC EXPRESSIONS

    ICSE|Exercise Exercise 11(E)|15 Videos
  • ALGEBRAIC EXPRESSIONS

    ICSE|Exercise Exercise 11 (B)|35 Videos
  • AREA OF A TRAPEZIUM AND A POLYGON

    ICSE|Exercise EXERCISE 20(D)|21 Videos

Similar Questions

Explore conceptually related problems

Multiply : 2x - 3y by 6

Multiply : 5x^(2) - 8xy + 6y^(2) - 3 by -3xy

Multiply: 2x by (3x+5y)

Multiply: (7x y+5y) by 3x y

Multiply: 2/9\ b y4/5 (ii) 3/5\ b y\ 12

Multiply: x^2+4y^2+2x y-3x+6y+9 by x-2y+3

Simplify 3y^(3) - [ 7y^(2) -{ - 2y^(3) -(2- 4y^(2))+6y -y^(2)}]

Multiply : 3a b^2c^3\ b y\ 5a^3b^2c (ii) 4x^2y z\ b y-3/2x^2y z^2

Divide : 36x^(2)y^(2) + 42 xy^(3) - 24 x^(3)y^(2) - 12 y^(5) by - 6y^(2)

Multiply -4xy^(3) and 6x^(2)y and verify your result for x = 2 and y = 1.