Home
Class 8
MATHS
Evaluate (3x^(4)y^(2))(2x^(2)y^(3)) for ...

Evaluate `(3x^(4)y^(2))(2x^(2)y^(3))` for x = 1 and y = 2.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \((3x^{4}y^{2})(2x^{2}y^{3})\) for \(x = 1\) and \(y = 2\), we will follow these steps: ### Step 1: Substitute the values of \(x\) and \(y\) We start by substituting \(x = 1\) and \(y = 2\) into the expression. \[ (3(1)^{4}(2)^{2})(2(1)^{2}(2)^{3}) \] ### Step 2: Simplify the powers Now, we simplify the powers of \(x\) and \(y\): \[ (3(1)(2^{2}))(2(1)(2^{3})) \] Since \(1^{4} = 1\) and \(1^{2} = 1\), we can simplify further: \[ (3(1)(4))(2(1)(8)) \] ### Step 3: Calculate the values Now, we calculate the values inside the parentheses: \[ (3 \cdot 4)(2 \cdot 8) \] Calculating each part: \[ 12 \cdot 16 \] ### Step 4: Multiply the results Finally, we multiply \(12\) and \(16\): \[ 12 \cdot 16 = 192 \] ### Final Result Thus, the value of the expression \((3x^{4}y^{2})(2x^{2}y^{3})\) for \(x = 1\) and \(y = 2\) is: \[ \boxed{192} \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSIONS

    ICSE|Exercise Exercise 11 (D)|21 Videos
  • ALGEBRAIC EXPRESSIONS

    ICSE|Exercise Exercise 11(E)|15 Videos
  • ALGEBRAIC EXPRESSIONS

    ICSE|Exercise Exercise 11 (B)|35 Videos
  • AREA OF A TRAPEZIUM AND A POLYGON

    ICSE|Exercise EXERCISE 20(D)|21 Videos

Similar Questions

Explore conceptually related problems

If (x^(2) + y^(2))/(x^(2) - y^(2)) = 2(1)/(8) , find : (i) (x)/(y) (ii) (x^(3) + y^(3))/(x^(3) - y^(3))

Evaluate : (i) (2x + 3y) ( 3x +4y)

Solve for (x - 1)^(2) and (y + 3)^(2) , 2x^(2) - 5y^(2) - x - 27y - 26 = 3(x + y + 5) and 4x^(2) - 3y^(2) - 2xy + 2x - 32y - 16 = (x - y + 4)^(2) .

Evaluate : (v) (3x - 4y) (3x + 4y) (9x^ + 16y^2)

If the coordinates of the vertices of an equilateral triangle with sides of length a are (x_(1),y_(1)),(x_(2),y_(2)) and (x_(3),y_(3)) then |(x_(1),y_(1),1),(x_(2),y_(2),1),(x_(3),y_(3),1)|^2=(3a^(4))/4

Evaluate : (viii) (3x + 4y) (3x -4y) (9x^2 + 16y^2)

Find the centre and radius of each of the following circle : (i) x^(2)+y^(2)+4x-4y+1=0 (ii) 2x^(2)+2y^(2)-6x+6y+1=0 (iii) 2x^(2)+2y^(2)=3k(x+k) (iv) 3x^(2)+3y^(2)-5x-6y+4=0 (v) x^(2)+y^(2)-2ax-2by+a^(2)=0

Find the equation of the circle whose diameter is the common chord of the circles x^(2) + y^(2) + 2x + 3y + 1 = 0 and x^(2) + y^(2) + 4x + 3y + 2 = 0

A triangle has vertices A_(i) (x_(i),y_(i)) for i= 1,2,3,. If the orthocenter of triangle is (0,0) then prove that |{:(x_(2)-x_(3),,y_(2)-y_(3),,y_(1)(y_(2)-y_(3))+x_(1)(x_(2)-x_(3))),(x_(3)-x_(1) ,,y_(3)-y_(1),,y_(2)(y_(3)-y_(1))+x_(2)(x_(3)-x_(1))),( x_(1)-x_(2),,y_(1)-y_(2),,y_(3)(y_(1)-y_(2))+x_(3)(x_(1)-x_(2))):}|=0

If the hyperbola xy=c^(2) intersects the circle x^(2)+y^(2)=a^(2)" is four points "P(x_(1),y_(1)), Q(x_(2),y_(2)), R(x_(3),y_(3)) and S(x_(4),y_(4)) then show that (i) x_(1)+x_(2)+x_(3)+x_(4)=0 (ii) y_(1)+y_(2)+y_(3)+y_(4)=0 (iii) x_(1)x_(2)x_(3)x_(4)=c^(4) (iv) y_(1)y_(2)y_(3)y_(4)=c^(4)