Home
Class 8
MATHS
If x = 2 and y = 1, Find the value of ...

If x = 2 and y = 1,
Find the value of `(-4x^(2)y^(3)) xx (-5x^(2)y^(5))`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the expression \((-4x^{2}y^{3}) \times (-5x^{2}y^{5})\) when \(x = 2\) and \(y = 1\), we will follow these steps: ### Step 1: Substitute the values of \(x\) and \(y\) into the expression. We start with the expression: \[ (-4x^{2}y^{3}) \times (-5x^{2}y^{5}) \] Substituting \(x = 2\) and \(y = 1\): \[ (-4(2)^{2}(1)^{3}) \times (-5(2)^{2}(1)^{5}) \] ### Step 2: Calculate the powers of \(x\) and \(y\). Calculating \(2^{2}\) and \(1^{3}\) and \(1^{5}\): \[ = (-4 \cdot 4 \cdot 1) \times (-5 \cdot 4 \cdot 1) \] Where \(2^{2} = 4\) and \(1^{3} = 1\), \(1^{5} = 1\). ### Step 3: Simplify the expression. Now, we can simplify the expression: \[ = (-4 \cdot 4) \times (-5 \cdot 4) \] Calculating each part: \[ = (-16) \times (-20) \] ### Step 4: Multiply the results. Now, we multiply \(-16\) and \(-20\): \[ = 16 \times 20 \] Calculating \(16 \times 20\): \[ = 320 \] ### Final Answer: Thus, the value of the expression is: \[ \boxed{320} \] ---
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSIONS

    ICSE|Exercise Exercise 11 (D)|21 Videos
  • ALGEBRAIC EXPRESSIONS

    ICSE|Exercise Exercise 11(E)|15 Videos
  • ALGEBRAIC EXPRESSIONS

    ICSE|Exercise Exercise 11 (B)|35 Videos
  • AREA OF A TRAPEZIUM AND A POLYGON

    ICSE|Exercise EXERCISE 20(D)|21 Videos

Similar Questions

Explore conceptually related problems

If x=2 and y=5 find the values of : 3x-4y

If x=2 and y=5 find the values of : 2x+3y

If 2x+3y=8 and x y=2 , find the value of 4x^2+9y^2

If x=2 and y=5 find the values of : (3x)/(2y)

If x : y=2:3, find the value of (3x+2y):(2x+5y)dot

Find the product of : 4x^(2) - 5y^(2) and 3x^(2) +2y^(2)

If x : y = 4 : 7 , find the value of (3x + 2y) : (5x + y) .

If 9x^2+25 y^2=181 and x y=-6, find the value of 3x+5y

If 2x + y = 23 and 4x - y = 19, find the values of x - 3y and 5y - 2x.

If 2x + y = 23 and 4x - y = 19 , then find the values of 5y - 2x and (y)/(x) - 2 .