Home
Class 8
MATHS
Evaluate : xz(x^(2) + y^(2)) for x = 2...

Evaluate :
`xz(x^(2) + y^(2))` for x = 2, y = 1 and z = 1.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \( xz(x^2 + y^2) \) for \( x = 2 \), \( y = 1 \), and \( z = 1 \), we will follow these steps: ### Step 1: Substitute the values into the expression We start with the expression: \[ xz(x^2 + y^2) \] Substituting \( x = 2 \), \( y = 1 \), and \( z = 1 \): \[ 1 \cdot 2 \cdot (2^2 + 1^2) \] ### Step 2: Calculate \( x^2 \) and \( y^2 \) Now, we calculate \( x^2 \) and \( y^2 \): \[ x^2 = 2^2 = 4 \] \[ y^2 = 1^2 = 1 \] ### Step 3: Add \( x^2 \) and \( y^2 \) Next, we add \( x^2 \) and \( y^2 \): \[ x^2 + y^2 = 4 + 1 = 5 \] ### Step 4: Multiply by \( x \) and \( z \) Now, we multiply the result by \( x \) and \( z \): \[ xz(x^2 + y^2) = 1 \cdot 2 \cdot 5 \] ### Step 5: Calculate the final result Finally, we calculate: \[ 1 \cdot 2 \cdot 5 = 10 \] Thus, the final value of the expression \( xz(x^2 + y^2) \) is: \[ \boxed{10} \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSIONS

    ICSE|Exercise Exercise 11 (D)|21 Videos
  • ALGEBRAIC EXPRESSIONS

    ICSE|Exercise Exercise 11(E)|15 Videos
  • ALGEBRAIC EXPRESSIONS

    ICSE|Exercise Exercise 11 (B)|35 Videos
  • AREA OF A TRAPEZIUM AND A POLYGON

    ICSE|Exercise EXERCISE 20(D)|21 Videos

Similar Questions

Explore conceptually related problems

Determine the product of z^2(x-y) and find the value if x=2,\ y=1. 15 , z=0. 01.

If x + y + z = 12, x^(2) + Y^(2) + z^(2) = 96 and (1)/(x)+(1)/(y)+(1)/(z)= 36 . Then find the value x^(3) + y^(3)+z^(3).

evaluate: |(0,xy^(2),xz^(2)),(x^(2)y,0,yz^(2)),(x^(2)z,zy^(2),0)|

If x,y,z are positive real numbers such that x^(2)+y^(2)+Z^(2)=7 and xy+yz+xz=4 then the minimum value of xy is

For x_(1), x_(2), y_(1), y_(2) in R if 0 lt x_(1)lt x_(2)lt y_(1) = y_(2) and z_(1) = x_(1) + i y_(1), z_(2) = x_(2)+ iy_(2) and z_(3) = (z_(1) + z_(2))//2, then z_(1) , z_(2) , z_(3) satisfy :

If x+y+z=xzy , prove that : x(1-y^2) (1-z^2) + y(1-z^2) (1-x^2) + z (1-x^2) (1-y^2) = 4xyz .

Evaluate each of the following expressions for x=-2,\ y=-1,\ z=3: (i) x/y+y/z+z/x (ii) x^2+y^2+z^2-x y-y z-z x

If x = 2, y = 3 and z = -1, find the values of : x-:y

If X: Y = 2:3 and Y:Z = 3:4 find X:Z .

Find all positive real numbers x, y, z such that: 2x-2y + 1/z = 1/(2014), 2y-2z + 1/x = 1/(2014), 2z-2x + 1/y = 1/(2014)