Home
Class 8
MATHS
Evaluate : xy^(2) (x-5y) + 1 for x = 2...

Evaluate :
`xy^(2) (x-5y) + 1` for x = 2 and y= 1.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \( xy^2 (x - 5y) + 1 \) for \( x = 2 \) and \( y = 1 \), follow these steps: ### Step 1: Substitute the values of \( x \) and \( y \) We start by substituting \( x = 2 \) and \( y = 1 \) into the expression. \[ xy^2 (x - 5y) + 1 = (2)(1^2)(2 - 5 \cdot 1) + 1 \] ### Step 2: Calculate \( y^2 \) Next, we calculate \( y^2 \). \[ 1^2 = 1 \] ### Step 3: Substitute \( y^2 \) back into the expression Now, substitute \( y^2 \) back into the expression. \[ = (2)(1)(2 - 5 \cdot 1) + 1 \] ### Step 4: Calculate \( 5y \) Now, calculate \( 5y \). \[ 5 \cdot 1 = 5 \] ### Step 5: Substitute \( 5y \) back into the expression Substituting \( 5y \) back into the expression gives us: \[ = (2)(1)(2 - 5) + 1 \] ### Step 6: Simplify the expression inside the parentheses Now, simplify \( 2 - 5 \). \[ 2 - 5 = -3 \] ### Step 7: Substitute back into the expression Substituting this back gives: \[ = (2)(1)(-3) + 1 \] ### Step 8: Calculate the product Now, calculate the product: \[ (2)(1)(-3) = -6 \] ### Step 9: Add 1 to the result Finally, add 1 to the result: \[ -6 + 1 = -5 \] ### Final Answer Thus, the value of the expression \( xy^2 (x - 5y) + 1 \) for \( x = 2 \) and \( y = 1 \) is: \[ \boxed{-5} \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSIONS

    ICSE|Exercise Exercise 11 (D)|21 Videos
  • ALGEBRAIC EXPRESSIONS

    ICSE|Exercise Exercise 11(E)|15 Videos
  • ALGEBRAIC EXPRESSIONS

    ICSE|Exercise Exercise 11 (B)|35 Videos
  • AREA OF A TRAPEZIUM AND A POLYGON

    ICSE|Exercise EXERCISE 20(D)|21 Videos

Similar Questions

Explore conceptually related problems

Evaluate : 3x^(2) + 5xy - 4y^(2) + x^(2) - 8xy - 5y^(2)

(i) If x and y both are positive and (2x^(2) - 5y^(2)) : xy = 1 : 3 , find x : y . (ii) Find x , if 16((a - x)/(a + x))^(3) = (a + x)/(a - x) .

If x^(2) + y^(2) = 37 and xy = 6, find x+y

Let f (x,y)= x^(2) - y^(2) and g (x,y)=2xy. such that (f ( x,y))^(2) -(g (x,y))^(2)=1/2 and f (x,y) . G(x,y) =(sqrt3)/(4) Find the number of ordered pairs (x,y) ?

If x^(2) + y^(2) =37 and xy = 6 : find x-y

Find f(x, y) if f(x + 2y, 2x + y) = 2xy.

If 15(2x^(2) - y^(2)) = 7xy , find x : y , if x and y both are positive.

If (2x + 3,y-1) =(3,5) , then find x and y.

Solve for (x - 1)^(2) and (y + 3)^(2) , 2x^(2) - 5y^(2) - x - 27y - 26 = 3(x + y + 5) and 4x^(2) - 3y^(2) - 2xy + 2x - 32y - 16 = (x - y + 4)^(2) .

The adjacent sides of a rectangle are 3x^(2) - 2xy + 5y^(2) and 2x^(2) + 5xy - 3y^(2) . Find the area of the rectangle.