Home
Class 8
MATHS
Evaluate : 2x(3x - 5) - 5(x-2)-18 for ...

Evaluate :
`2x(3x - 5) - 5(x-2)-18` for x = 2.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \(2x(3x - 5) - 5(x - 2) - 18\) for \(x = 2\), we will follow these steps: ### Step 1: Substitute \(x = 2\) into the expression The original expression is: \[ 2x(3x - 5) - 5(x - 2) - 18 \] Substituting \(x = 2\): \[ 2(2)(3(2) - 5) - 5(2 - 2) - 18 \] ### Step 2: Simplify the terms inside the parentheses Calculating \(3(2) - 5\): \[ 3(2) = 6 \quad \Rightarrow \quad 6 - 5 = 1 \] Now the expression becomes: \[ 2(2)(1) - 5(0) - 18 \] ### Step 3: Calculate the multiplication Now calculate \(2(2)(1)\): \[ 2(2)(1) = 4 \] And \(5(0)\): \[ 5(0) = 0 \] So the expression simplifies to: \[ 4 - 0 - 18 \] ### Step 4: Perform the subtraction Now, we perform the subtraction: \[ 4 - 0 = 4 \] Then: \[ 4 - 18 = -14 \] ### Final Result Thus, the value of the expression when \(x = 2\) is: \[ \boxed{-14} \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSIONS

    ICSE|Exercise Exercise 11 (D)|21 Videos
  • ALGEBRAIC EXPRESSIONS

    ICSE|Exercise Exercise 11(E)|15 Videos
  • ALGEBRAIC EXPRESSIONS

    ICSE|Exercise Exercise 11 (B)|35 Videos
  • AREA OF A TRAPEZIUM AND A POLYGON

    ICSE|Exercise EXERCISE 20(D)|21 Videos

Similar Questions

Explore conceptually related problems

Evaluate : (3x - 2)(x + 5) for x = 2.

Evaluate (x^(5)) xx (3x^(2)) xx (-2x) for x = 1.

Evaluate: intdx/(2x^2+3x+5)

evaluate int (3x^2 − √5x + 2)dx

Evaluate : (i) (2x - (3)/(5) ) (2x + (3)/(5) )

Evaluate : 3x^(2) + 5xy - 4y^(2) + x^(2) - 8xy - 5y^(2)

Evaluate: int(2x-5)sqrt(2+3x-x^2)dx

Evaluate: int(2x-5)sqrt(2+3x-x^2)dx

Evaluate: int(2x-5)sqrt(2+3x-x^2)dx

Evaluate: int(5x-2)/(1+2x+3x^2)dx