Home
Class 8
MATHS
Multiply : 2x^(2) - 4x + 5 by x^(2) + ...

Multiply :
`2x^(2) - 4x + 5` by `x^(2) + 3x - 7`

Text Solution

AI Generated Solution

The correct Answer is:
To multiply the expressions \(2x^2 - 4x + 5\) and \(x^2 + 3x - 7\), we will use the distributive property (also known as the FOIL method for binomials). Here’s the step-by-step solution: ### Step 1: Distribute each term in the first expression to each term in the second expression. We will multiply each term in \(2x^2 - 4x + 5\) by each term in \(x^2 + 3x - 7\). 1. **Multiply \(2x^2\) by each term in \(x^2 + 3x - 7\)**: - \(2x^2 \cdot x^2 = 2x^4\) - \(2x^2 \cdot 3x = 6x^3\) - \(2x^2 \cdot (-7) = -14x^2\) 2. **Multiply \(-4x\) by each term in \(x^2 + 3x - 7\)**: - \(-4x \cdot x^2 = -4x^3\) - \(-4x \cdot 3x = -12x^2\) - \(-4x \cdot (-7) = 28x\) 3. **Multiply \(5\) by each term in \(x^2 + 3x - 7\)**: - \(5 \cdot x^2 = 5x^2\) - \(5 \cdot 3x = 15x\) - \(5 \cdot (-7) = -35\) ### Step 2: Combine all the results from the multiplications. Now, we will combine all the terms we calculated: \[ 2x^4 + 6x^3 - 14x^2 - 4x^3 - 12x^2 + 28x + 5x^2 + 15x - 35 \] ### Step 3: Combine like terms. Now we will combine the like terms: - **For \(x^4\)**: - \(2x^4\) - **For \(x^3\)**: - \(6x^3 - 4x^3 = 2x^3\) - **For \(x^2\)**: - \(-14x^2 - 12x^2 + 5x^2 = -21x^2\) - **For \(x\)**: - \(28x + 15x = 43x\) - **Constant term**: - \(-35\) ### Final Result: Combining all these, we get the final expression: \[ 2x^4 + 2x^3 - 21x^2 + 43x - 35 \] ### Summary of the Solution: The product of the expressions \(2x^2 - 4x + 5\) and \(x^2 + 3x - 7\) is: \[ \boxed{2x^4 + 2x^3 - 21x^2 + 43x - 35} \]
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSIONS

    ICSE|Exercise Exercise 11 (D)|21 Videos
  • ALGEBRAIC EXPRESSIONS

    ICSE|Exercise Exercise 11(E)|15 Videos
  • ALGEBRAIC EXPRESSIONS

    ICSE|Exercise Exercise 11 (B)|35 Videos
  • AREA OF A TRAPEZIUM AND A POLYGON

    ICSE|Exercise EXERCISE 20(D)|21 Videos

Similar Questions

Explore conceptually related problems

Multiply x^(2) - 4x + 7 by x - 2.

Multiply 2x^(3) - 7x + 8 by 3x^(2) + 2x .

Multiply : 6x^(3) - 5x + 10 by 4 - 3x^(2)

Multiply: (2x^2-4x+5)\ b y\ (x^2+3x-7)

Multiply : 2x " with " 3x

Multiply 2x - 5 " by " 3x+2

Multiply (2x+1) by (x-5) .

Multiply: 2x by (3x+5y)

Multiply : abx, -3a^(2)x and 7b^(2)x^(3)

Multiply: (i) (2x^2-1)b y\ (4x^3+5x^2) (ii) (2x y+3y^2)(3y^2-2)