Home
Class 12
MATHS
If log2 (log8x)=log8(log2x), find the va...

` If log_2 (log_8x)=log_8(log_2x),` find the value of `(log_2x)^2.`

A

1

B

27

C

3

D

Not defined

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \log_2 (\log_8 x) = \log_8 (\log_2 x) \), we will follow these steps: ### Step 1: Rewrite the logarithms in terms of a common base We know that \( \log_8 x \) can be rewritten using the change of base formula: \[ \log_8 x = \frac{\log_2 x}{\log_2 8} = \frac{\log_2 x}{3} \] because \( 8 = 2^3 \). ### Step 2: Substitute into the equation Substituting this back into our original equation gives: \[ \log_2 \left(\frac{\log_2 x}{3}\right) = \log_8 (\log_2 x) \] ### Step 3: Rewrite the right-hand side Now we rewrite the right-hand side: \[ \log_8 (\log_2 x) = \frac{\log_2 (\log_2 x)}{3} \] So we have: \[ \log_2 \left(\frac{\log_2 x}{3}\right) = \frac{\log_2 (\log_2 x)}{3} \] ### Step 4: Simplify the left-hand side Using the property of logarithms, we can simplify the left-hand side: \[ \log_2 \left(\frac{\log_2 x}{3}\right) = \log_2 (\log_2 x) - \log_2 3 \] Thus, our equation becomes: \[ \log_2 (\log_2 x) - \log_2 3 = \frac{\log_2 (\log_2 x)}{3} \] ### Step 5: Clear the fraction To eliminate the fraction, multiply the entire equation by 3: \[ 3 \log_2 (\log_2 x) - 3 \log_2 3 = \log_2 (\log_2 x) \] ### Step 6: Rearrange the equation Rearranging gives: \[ 3 \log_2 (\log_2 x) - \log_2 (\log_2 x) = 3 \log_2 3 \] This simplifies to: \[ 2 \log_2 (\log_2 x) = 3 \log_2 3 \] ### Step 7: Solve for \( \log_2 (\log_2 x) \) Dividing both sides by 2: \[ \log_2 (\log_2 x) = \frac{3}{2} \log_2 3 \] ### Step 8: Exponentiate to remove the logarithm Exponentiating both sides gives: \[ \log_2 x = 3^{\frac{3}{2}} = 3\sqrt{3} \] ### Step 9: Find \( (\log_2 x)^2 \) Now, we need to find \( (\log_2 x)^2 \): \[ (\log_2 x)^2 = (3\sqrt{3})^2 = 27 \] Thus, the value of \( (\log_2 x)^2 \) is \( \boxed{27} \).

To solve the equation \( \log_2 (\log_8 x) = \log_8 (\log_2 x) \), we will follow these steps: ### Step 1: Rewrite the logarithms in terms of a common base We know that \( \log_8 x \) can be rewritten using the change of base formula: \[ \log_8 x = \frac{\log_2 x}{\log_2 8} = \frac{\log_2 x}{3} \] because \( 8 = 2^3 \). ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS SEC - 1|1 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS|9 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

If log_2 (log_2 (log_3 x)) = log_2 (log_3 (log_2 y))=0 , then the value of (x+y) is

If log_(y)x +log_(x)y = 7 , then the value of (log_(y)x)^(2) +(log_(x)y)^(2) , is

If log_y x +log_x y=7, then the value of (log_y x)^2+(log_x y)^2, is

If "log"_(5)("log"_(5)("log"_(2)x)) =0 then the value of x, is

if (a+log_4 3)/(a+log_2 3)= (a+log_8 3)/(a+log_4 3)=b then find the value of b

If log_(2)(x + y) = log_(3)(x - y) = (log 25)/(log 0.2) , find the values of x and y.

If sum log_(2)x+log_(4) x + log_(16) x + log_(256) x + …=6, then find the value of x.

Given : (log x)/(log y) = (3)/(2) and log(xy) = 5, find the values of x and y.

If p = log 20 and q = log 25, find the value of x, if 2 log(x + 1) = 2p - q.

RESONANCE ENGLISH-TEST PAPERS-MATHEMATICS
  1. If log2 (log8x)=log8(log2x), find the value of (log2x)^2.

    Text Solution

    |

  2. The least positive vlaue of the parameter 'a' for which there exist at...

    Text Solution

    |

  3. The locus of the midpoint of a chord of the circle x^2+y^2=4 which sub...

    Text Solution

    |

  4. If f(x)=x + tan x and f si the inverse of g, then g'(x) equals

    Text Solution

    |

  5. Tangents PA and PB are drawn to parabola y^(2)=4x from any arbitrary p...

    Text Solution

    |

  6. If lim(nrarroo) (n.2^(n))/(n(3x-4)^(n)+n.2^(n+1)+2^(n))=1/2 where "n" ...

    Text Solution

    |

  7. Eccentricity of ellipse 2(x-y+1)^(2)+3(x+y+2)^(2)=5 is

    Text Solution

    |

  8. If (tan^(-1)x)^(3)+(tan^(-1)y)^(3)=1-3tan^(-1)x.tan^(-1)y. Then which ...

    Text Solution

    |

  9. If f:RrarrR is a continuous function satisfying f(0)=1 and f(2x)-f(x)=...

    Text Solution

    |

  10. tan^(-1)(sinx)=sin^(-1)(tanx) holds true for

    Text Solution

    |

  11. The function f(x) = (x^(2) - 1)|x^(2) - 3x + 3|+cos (|x|) is not diffe...

    Text Solution

    |

  12. Consider parabola P(1)-=y=x^(2) and P(2)-=y^(2)=-8x and the line L-=lx...

    Text Solution

    |

  13. If the normals at (x(i),y(i)) i=1,2,3,4 to the rectangular hyperbola x...

    Text Solution

    |

  14. Let f(x) = x^(3) - x^(2) + x + 1 and g(x) = {{:(max f(t)",", 0 le t le...

    Text Solution

    |

  15. The sum of the roots of the equation tan^(-1)(x+3)-tan^(-1)(x-3)="sin"...

    Text Solution

    |

  16. For an ellipse having major and minor axis along x and y axes respecti...

    Text Solution

    |

  17. If f:[0,1]rarrR is defined as f(x)={(x^(3)(1-x)"sin"1/(x^(2)) 0ltxle1)...

    Text Solution

    |

  18. If f(x)=root (3)(8x^(3)+mx^(2))-nx such that lim(xrarroo)f(x)=1 then

    Text Solution

    |

  19. For the curve y=4x^3-2x^5, find all the points at which the tangents p...

    Text Solution

    |

  20. Minimum value of (sin^(-1)x)^(2)+(cos^(-1)x)^(2) is greater than

    Text Solution

    |

  21. If y + b = m(1)(x + a) and y + b = m(2)(x+a) are two tangents to the p...

    Text Solution

    |