Home
Class 12
MATHS
Suppose that beta is a real number such ...

Suppose that `beta` is a real number such that `3^(2x +3) = (3^(x))/(2^(x))` , then the value of `2^(-(1+log_(2)3)beta)` is equal to (A) `6 (B) `9 (C) `18 (D) `27

A

6

B

9

C

18

D

27

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 3^{2x + 3} = \frac{3^x}{2^x} \) and find the value of \( 2^{-(1 + \log_2 3) \beta} \), we can follow these steps: ### Step 1: Rewrite the equation Start with the given equation: \[ 3^{2x + 3} = \frac{3^x}{2^x} \] We can rewrite the right side: \[ 3^{2x + 3} = 3^x \cdot 2^{-x} \] ### Step 2: Simplify the equation Now, we can express the left side: \[ 3^{2x} \cdot 3^3 = 3^x \cdot 2^{-x} \] This simplifies to: \[ 27 \cdot 3^{2x} = \frac{3^x}{2^x} \] Now, we can multiply both sides by \( 2^x \): \[ 27 \cdot 3^{2x} \cdot 2^x = 3^x \] ### Step 3: Rearranging the terms Rearranging gives: \[ 27 \cdot 3^{2x} \cdot 2^x - 3^x = 0 \] Factoring out \( 3^x \): \[ 3^x (27 \cdot 3^x \cdot 2^x - 1) = 0 \] Since \( 3^x \neq 0 \), we have: \[ 27 \cdot 3^x \cdot 2^x = 1 \] ### Step 4: Solving for \( 3^x \) From the equation: \[ 3^x \cdot 2^x = \frac{1}{27} \] This implies: \[ (3 \cdot 2)^x = \frac{1}{27} \] Thus: \[ 6^x = 27^{-1} \] We can express \( 27 \) as \( 3^3 \): \[ 6^x = 3^{-3} \] ### Step 5: Taking logarithms Taking logarithms on both sides: \[ x \log 6 = -3 \log 3 \] Thus: \[ x = -\frac{3 \log 3}{\log 6} \] ### Step 6: Finding \( \beta \) Now, we can express \( \beta \) in terms of \( x \): \[ \beta = -x = \frac{3 \log 3}{\log 6} \] ### Step 7: Substitute \( \beta \) into the expression Now we need to find: \[ 2^{-(1 + \log_2 3) \beta} \] Substituting \( \beta \): \[ 2^{-(1 + \log_2 3) \cdot \frac{3 \log 3}{\log 6}} \] ### Step 8: Simplifying the exponent Using the change of base formula: \[ \log_2 3 = \frac{\log 3}{\log 2} \] Thus: \[ 1 + \log_2 3 = 1 + \frac{\log 3}{\log 2} = \frac{\log 2 + \log 3}{\log 2} = \frac{\log 6}{\log 2} \] Now substituting back: \[ 2^{-\left(\frac{\log 6}{\log 2}\right) \cdot \frac{3 \log 3}{\log 6}} = 2^{-3 \frac{\log 3}{\log 2}} = \left(2^{-\log_2 3}\right)^3 = \left(\frac{1}{3}\right)^3 = \frac{1}{27} \] ### Step 9: Final result Thus, the value of \( 2^{-(1 + \log_2 3) \beta} \) is: \[ 27 \] ### Final Answer The value of \( 2^{-(1 + \log_2 3) \beta} \) is \( 27 \) (Option D).

To solve the equation \( 3^{2x + 3} = \frac{3^x}{2^x} \) and find the value of \( 2^{-(1 + \log_2 3) \beta} \), we can follow these steps: ### Step 1: Rewrite the equation Start with the given equation: \[ 3^{2x + 3} = \frac{3^x}{2^x} \] We can rewrite the right side: ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS SEC - 1|1 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS|9 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

If 3^(x+1)=6^(log_(2)3) , then x is equal to

Suppose that a and b are positive real numbers such that log_(27)a+log_9(b)=7/2 and log_(27)b+log_9a=2/3 .Then the value of the ab equals

If alpha and beta are roots of the equation 2x^(2)-3x-5=0 , then the value of (1)/(alpha)+(1)/(beta) is

If 8^(x+1)=64 , what is the value of 3^(2x+1) ? (a)1 (b) 3 (c) 9 (d) 27

If 2^(x+y)=6^ya n d3^(x-1)=2^(y+1), then the value of (log3-log2)(x-y) is 1 (b) (log)_2 3- (log)_3 2 (c) log(3/2) (d) none of these

If x=2+2^(2//3)+2^(1//3) , then the value of x^3-6x^2+6x is (a) 3 b. 2 c. 1 d. -2

If alpha,beta are the roots of the equation 8x^2-3x+27=0, then the value of (alpha^2/beta)^(1/3)+(beta^2/alpha)^(1/3) is

If alpha and beta are roots of equation (log_(3)x)^(2)-4(log_(3)x)+2=0 then The value of log_(alpha)beta+log_(beta)alpha is

The x , y , z are positive real numbers such that (log)_(2x)z=3,(log)_(5y)z=6,a n d(log)_(x y)z=2/3, then the value of (1/(2z)) is ............

The x , y , z are positive real numbers such that (log)_(2x)z=3,(log)_(5y)z=6,a n d(log)_(x y)z=2/3, then the value of (1/(2z)) is ............

RESONANCE ENGLISH-TEST PAPERS-MATHEMATICS
  1. Suppose that beta is a real number such that 3^(2x +3) = (3^(x))/(2^(x...

    Text Solution

    |

  2. The least positive vlaue of the parameter 'a' for which there exist at...

    Text Solution

    |

  3. The locus of the midpoint of a chord of the circle x^2+y^2=4 which sub...

    Text Solution

    |

  4. If f(x)=x + tan x and f si the inverse of g, then g'(x) equals

    Text Solution

    |

  5. Tangents PA and PB are drawn to parabola y^(2)=4x from any arbitrary p...

    Text Solution

    |

  6. If lim(nrarroo) (n.2^(n))/(n(3x-4)^(n)+n.2^(n+1)+2^(n))=1/2 where "n" ...

    Text Solution

    |

  7. Eccentricity of ellipse 2(x-y+1)^(2)+3(x+y+2)^(2)=5 is

    Text Solution

    |

  8. If (tan^(-1)x)^(3)+(tan^(-1)y)^(3)=1-3tan^(-1)x.tan^(-1)y. Then which ...

    Text Solution

    |

  9. If f:RrarrR is a continuous function satisfying f(0)=1 and f(2x)-f(x)=...

    Text Solution

    |

  10. tan^(-1)(sinx)=sin^(-1)(tanx) holds true for

    Text Solution

    |

  11. The function f(x) = (x^(2) - 1)|x^(2) - 3x + 3|+cos (|x|) is not diffe...

    Text Solution

    |

  12. Consider parabola P(1)-=y=x^(2) and P(2)-=y^(2)=-8x and the line L-=lx...

    Text Solution

    |

  13. If the normals at (x(i),y(i)) i=1,2,3,4 to the rectangular hyperbola x...

    Text Solution

    |

  14. Let f(x) = x^(3) - x^(2) + x + 1 and g(x) = {{:(max f(t)",", 0 le t le...

    Text Solution

    |

  15. The sum of the roots of the equation tan^(-1)(x+3)-tan^(-1)(x-3)="sin"...

    Text Solution

    |

  16. For an ellipse having major and minor axis along x and y axes respecti...

    Text Solution

    |

  17. If f:[0,1]rarrR is defined as f(x)={(x^(3)(1-x)"sin"1/(x^(2)) 0ltxle1)...

    Text Solution

    |

  18. If f(x)=root (3)(8x^(3)+mx^(2))-nx such that lim(xrarroo)f(x)=1 then

    Text Solution

    |

  19. For the curve y=4x^3-2x^5, find all the points at which the tangents p...

    Text Solution

    |

  20. Minimum value of (sin^(-1)x)^(2)+(cos^(-1)x)^(2) is greater than

    Text Solution

    |

  21. If y + b = m(1)(x + a) and y + b = m(2)(x+a) are two tangents to the p...

    Text Solution

    |