Home
Class 12
MATHS
If f : IR rarr IR be defined by f(x)=...

If `f : IR rarr IR` be defined by
`f(x)={(2x,xgt3),(x^(2),1ltxle3."thenf(-1)+f(2)+f(5)=),(3x,xle1):}`

A

10

B

11

C

12

D

14

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the function \( f \) at three different points: \( f(-1) \), \( f(2) \), and \( f(5) \). The function \( f \) is defined piecewise as follows: \[ f(x) = \begin{cases} 3x & \text{if } x < 1 \\ x^2 & \text{if } 1 \leq x \leq 3 \\ 2x & \text{if } x > 3 \end{cases} \] Now, let's calculate each term step by step. ### Step 1: Calculate \( f(-1) \) Since \(-1 < 1\), we use the first case of the function: \[ f(-1) = 3 \times (-1) = -3 \] ### Step 2: Calculate \( f(2) \) Since \(2\) lies between \(1\) and \(3\), we use the second case of the function: \[ f(2) = 2^2 = 4 \] ### Step 3: Calculate \( f(5) \) Since \(5 > 3\), we use the third case of the function: \[ f(5) = 2 \times 5 = 10 \] ### Step 4: Combine the results Now we sum the results from the three evaluations: \[ f(-1) + f(2) + f(5) = -3 + 4 + 10 \] Calculating this gives: \[ -3 + 4 = 1 \\ 1 + 10 = 11 \] ### Final Result Thus, the final result is: \[ f(-1) + f(2) + f(5) = 11 \]

To solve the problem, we need to evaluate the function \( f \) at three different points: \( f(-1) \), \( f(2) \), and \( f(5) \). The function \( f \) is defined piecewise as follows: \[ f(x) = \begin{cases} 3x & \text{if } x < 1 \\ x^2 & \text{if } 1 \leq x \leq 3 \\ 2x & \text{if } x > 3 ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS SEC - 1|1 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS|9 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

If f: R to R be defined by f(x)={(2x:xgt3),(x^(2):1lt x le 3),(3x:x le 1):} Then, f(-1)+f(2)+f(4) is

If f: R rarr R is defined by f(x)=3x+2,\ define f\ [f(x)]\

If a function f:RtoR is defined by f(x){{:(2x,xgt3),(x^(2),1lexle3),(3x,xlt1):} Then the value of f(-1)+f(2)+f(4) is

The function f:R rarr R defined as f(x)=(x^(2)-x+1)/(x^(2)+x+1) is

Let f : [-1, -1/2] rarr [-1, 1] is defined by f(x)=4x^(3)-3x , then f^(-1) (x) is

If f : R to R defined by f ( x) = x^(2) + 1 , then find f^(-1) (-3)

If f:R to R is defined as: f(x)= {{:(2x+1, "if",x gt 2),(x^(2)-1,"if",-2 lt x lt 2),(2x,"if",x lt -2):} then evaluate the following: (i) f(1) (ii) f(5) (iii) f(-3)

If f:[1, oo) rarr [1, oo) is defined as f(x) = 3^(x(x-2)) then f^(-1)(x) is equal to

If the functions of f and g are defined by f(x)=3x-4 and g(x)=2+3x then g^(-1)(f^(-1)(5))

If f:R->R be defined by f(x)=x^2+1 , then find f^(-1)(17) and f^(-1)(-3) .

RESONANCE ENGLISH-TEST PAPERS-MATHEMATICS
  1. If f : IR rarr IR be defined by f(x)={(2x,xgt3),(x^(2),1ltxle3."the...

    Text Solution

    |

  2. The least positive vlaue of the parameter 'a' for which there exist at...

    Text Solution

    |

  3. The locus of the midpoint of a chord of the circle x^2+y^2=4 which sub...

    Text Solution

    |

  4. If f(x)=x + tan x and f si the inverse of g, then g'(x) equals

    Text Solution

    |

  5. Tangents PA and PB are drawn to parabola y^(2)=4x from any arbitrary p...

    Text Solution

    |

  6. If lim(nrarroo) (n.2^(n))/(n(3x-4)^(n)+n.2^(n+1)+2^(n))=1/2 where "n" ...

    Text Solution

    |

  7. Eccentricity of ellipse 2(x-y+1)^(2)+3(x+y+2)^(2)=5 is

    Text Solution

    |

  8. If (tan^(-1)x)^(3)+(tan^(-1)y)^(3)=1-3tan^(-1)x.tan^(-1)y. Then which ...

    Text Solution

    |

  9. If f:RrarrR is a continuous function satisfying f(0)=1 and f(2x)-f(x)=...

    Text Solution

    |

  10. tan^(-1)(sinx)=sin^(-1)(tanx) holds true for

    Text Solution

    |

  11. The function f(x) = (x^(2) - 1)|x^(2) - 3x + 3|+cos (|x|) is not diffe...

    Text Solution

    |

  12. Consider parabola P(1)-=y=x^(2) and P(2)-=y^(2)=-8x and the line L-=lx...

    Text Solution

    |

  13. If the normals at (x(i),y(i)) i=1,2,3,4 to the rectangular hyperbola x...

    Text Solution

    |

  14. Let f(x) = x^(3) - x^(2) + x + 1 and g(x) = {{:(max f(t)",", 0 le t le...

    Text Solution

    |

  15. The sum of the roots of the equation tan^(-1)(x+3)-tan^(-1)(x-3)="sin"...

    Text Solution

    |

  16. For an ellipse having major and minor axis along x and y axes respecti...

    Text Solution

    |

  17. If f:[0,1]rarrR is defined as f(x)={(x^(3)(1-x)"sin"1/(x^(2)) 0ltxle1)...

    Text Solution

    |

  18. If f(x)=root (3)(8x^(3)+mx^(2))-nx such that lim(xrarroo)f(x)=1 then

    Text Solution

    |

  19. For the curve y=4x^3-2x^5, find all the points at which the tangents p...

    Text Solution

    |

  20. Minimum value of (sin^(-1)x)^(2)+(cos^(-1)x)^(2) is greater than

    Text Solution

    |

  21. If y + b = m(1)(x + a) and y + b = m(2)(x+a) are two tangents to the p...

    Text Solution

    |