Home
Class 12
MATHS
If (1)/(log(2)a)+(1)/(log(4)a)+(1)/(log(...

If `(1)/(log_(2)a)+(1)/(log_(4)a)+(1)/(log_(8)a)+(1)/(log_(16)a)+….+`
`(1)/(log_(2^(n))a) = (n(n+1))/(k)` then k `log_(a)2` is equal to

A

2

B

3

C

1

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression given and find the value of \( k \log_a 2 \). ### Step-by-step Solution: 1. **Rewrite the logarithmic terms**: We start with the expression: \[ \frac{1}{\log_2 a} + \frac{1}{\log_4 a} + \frac{1}{\log_8 a} + \frac{1}{\log_{16} a} + \ldots + \frac{1}{\log_{2^n} a} \] Using the change of base formula for logarithms, we can rewrite each term: \[ \frac{1}{\log_{2^k} a} = \log_a (2^k) = k \log_a 2 \] Therefore, we can express the entire sum as: \[ \sum_{k=1}^{n} k \log_a 2 \] 2. **Factor out the common term**: The sum can be factored: \[ \log_a 2 \sum_{k=1}^{n} k \] 3. **Use the formula for the sum of the first n natural numbers**: The sum of the first \( n \) natural numbers is given by: \[ \sum_{k=1}^{n} k = \frac{n(n+1)}{2} \] Substituting this into our expression gives: \[ \log_a 2 \cdot \frac{n(n+1)}{2} \] 4. **Set the expression equal to the given equation**: According to the problem, we have: \[ \log_a 2 \cdot \frac{n(n+1)}{2} = \frac{n(n+1)}{k} \] 5. **Cross-multiply to solve for k**: Cross-multiplying gives: \[ k \cdot \log_a 2 \cdot \frac{n(n+1)}{2} = n(n+1) \] Simplifying this, we find: \[ k \log_a 2 = \frac{2n(n+1)}{n(n+1)} = 2 \] 6. **Final result**: Therefore, we conclude that: \[ k \log_a 2 = 2 \] ### Conclusion: The value of \( k \log_a 2 \) is \( 2 \).

To solve the problem, we need to evaluate the expression given and find the value of \( k \log_a 2 \). ### Step-by-step Solution: 1. **Rewrite the logarithmic terms**: We start with the expression: \[ \frac{1}{\log_2 a} + \frac{1}{\log_4 a} + \frac{1}{\log_8 a} + \frac{1}{\log_{16} a} + \ldots + \frac{1}{\log_{2^n} a} ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS SEC - 1|1 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS|9 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

If (1)/("log"_(2)a) + (1)/("log"_(4)a) + (1)/("log"_(8)a) + (1)/("log"_(16)a) + …. + (1)/("log"_(2^(n))a) = (n(n+1)/(lambda)) then lambda equals

(1)/("log"_(2)n) + (1)/("log"_(3)n) + (1)/("log"_(4)n) + … + (1)/("log"_(43)n)=

If (1)/(log_(a)x) + (1)/(log_(b)x) = (2)/(log_(c)x) , prove that : c^(2) = ab .

Let P=(5)/((1)/(log_(2)x)+(1)/(log_(3)x)+(1)/(log_(4)x)+(1)/(log_(5)x))and (120)^(P)=32 , then the value of x be :

sum_(r=1)^(n) 1/(log_(2^(r))4) is equal to

1/log_(ab)(abc)+1/log_(bc)(abc)+1/log_(ca)(abc) is equal to:

Prove that: 1/(log_2N)+1/(log_3N)+1/(log_4N)+…+1/(log_(2011)N)=1/(log_(2011!)N)

Solve log_((1)/(3))(x-1)>log_((1)/(3))4 .

If (1 + 3 + 5 + .... " upto n terms ")/(4 + 7 + 10 + ... " upto n terms") = (20)/(7 " log"_(10)x) and n = log_(10)x + log_(10) x^((1)/(2)) + log_(10) x^((1)/(4)) + log_(10) x^((1)/(8)) + ... + oo , then x is equal to

If f(x)=cos^(-1){(1-(log_(e)x)^(2))/(1+(log_(e)x)^(2))}, then f'((1)/( e )) is equal to

RESONANCE ENGLISH-TEST PAPERS-MATHEMATICS
  1. If (1)/(log(2)a)+(1)/(log(4)a)+(1)/(log(8)a)+(1)/(log(16)a)+….+ (1)/...

    Text Solution

    |

  2. The least positive vlaue of the parameter 'a' for which there exist at...

    Text Solution

    |

  3. The locus of the midpoint of a chord of the circle x^2+y^2=4 which sub...

    Text Solution

    |

  4. If f(x)=x + tan x and f si the inverse of g, then g'(x) equals

    Text Solution

    |

  5. Tangents PA and PB are drawn to parabola y^(2)=4x from any arbitrary p...

    Text Solution

    |

  6. If lim(nrarroo) (n.2^(n))/(n(3x-4)^(n)+n.2^(n+1)+2^(n))=1/2 where "n" ...

    Text Solution

    |

  7. Eccentricity of ellipse 2(x-y+1)^(2)+3(x+y+2)^(2)=5 is

    Text Solution

    |

  8. If (tan^(-1)x)^(3)+(tan^(-1)y)^(3)=1-3tan^(-1)x.tan^(-1)y. Then which ...

    Text Solution

    |

  9. If f:RrarrR is a continuous function satisfying f(0)=1 and f(2x)-f(x)=...

    Text Solution

    |

  10. tan^(-1)(sinx)=sin^(-1)(tanx) holds true for

    Text Solution

    |

  11. The function f(x) = (x^(2) - 1)|x^(2) - 3x + 3|+cos (|x|) is not diffe...

    Text Solution

    |

  12. Consider parabola P(1)-=y=x^(2) and P(2)-=y^(2)=-8x and the line L-=lx...

    Text Solution

    |

  13. If the normals at (x(i),y(i)) i=1,2,3,4 to the rectangular hyperbola x...

    Text Solution

    |

  14. Let f(x) = x^(3) - x^(2) + x + 1 and g(x) = {{:(max f(t)",", 0 le t le...

    Text Solution

    |

  15. The sum of the roots of the equation tan^(-1)(x+3)-tan^(-1)(x-3)="sin"...

    Text Solution

    |

  16. For an ellipse having major and minor axis along x and y axes respecti...

    Text Solution

    |

  17. If f:[0,1]rarrR is defined as f(x)={(x^(3)(1-x)"sin"1/(x^(2)) 0ltxle1)...

    Text Solution

    |

  18. If f(x)=root (3)(8x^(3)+mx^(2))-nx such that lim(xrarroo)f(x)=1 then

    Text Solution

    |

  19. For the curve y=4x^3-2x^5, find all the points at which the tangents p...

    Text Solution

    |

  20. Minimum value of (sin^(-1)x)^(2)+(cos^(-1)x)^(2) is greater than

    Text Solution

    |

  21. If y + b = m(1)(x + a) and y + b = m(2)(x+a) are two tangents to the p...

    Text Solution

    |