Home
Class 12
MATHS
If ((x^(2)-1)(x+2)(x+1)^(2))/((x-2))lt0 ...

If `((x^(2)-1)(x+2)(x+1)^(2))/((x-2))lt0` , then complete solution set of inequation is

A

`(-2,-1)uu(1,2)`

B

`(-oo, -2)uu(2,oo)`

C

`(-2,-1)uu(2,oo)`

D

`(-2,-1)uu(1,oo)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \[ \frac{(x^2 - 1)(x + 2)(x + 1)^2}{(x - 2)} < 0, \] we will follow these steps: ### Step 1: Factor the numerator and denominator The numerator can be factored as follows: - \(x^2 - 1 = (x - 1)(x + 1)\) - The term \((x + 1)^2\) is already factored. - The term \((x + 2)\) is already factored. Thus, we can rewrite the expression as: \[ \frac{(x - 1)(x + 1)^3(x + 2)}{(x - 2)} < 0. \] ### Step 2: Identify the critical points The critical points occur where the numerator or denominator is zero. Setting each factor to zero gives us: - \(x - 1 = 0 \Rightarrow x = 1\) - \(x + 1 = 0 \Rightarrow x = -1\) (with multiplicity 3) - \(x + 2 = 0 \Rightarrow x = -2\) - \(x - 2 = 0 \Rightarrow x = 2\) The critical points are \(x = -2, -1, 1, 2\). ### Step 3: Determine the intervals The critical points divide the real number line into the following intervals: 1. \((-∞, -2)\) 2. \((-2, -1)\) 3. \((-1, 1)\) 4. \((1, 2)\) 5. \((2, ∞)\) ### Step 4: Test each interval We will test a point from each interval to determine the sign of the expression in that interval. 1. **Interval \((-∞, -2)\)**: Test \(x = -3\) \[ \frac{(-3 - 1)(-3 + 1)^3(-3 + 2)}{(-3 - 2)} = \frac{(-4)(-2)^3(-1)}{-5} = \frac{-32}{-5} > 0 \] 2. **Interval \((-2, -1)\)**: Test \(x = -1.5\) \[ \frac{(-1.5 - 1)(-1.5 + 1)^3(-1.5 + 2)}{(-1.5 - 2)} = \frac{(-2.5)(-0.5)^3(0.5)}{-3.5} = \frac{(-2.5)(-0.125)(0.5)}{-3.5} < 0 \] 3. **Interval \((-1, 1)\)**: Test \(x = 0\) \[ \frac{(0 - 1)(0 + 1)^3(0 + 2)}{(0 - 2)} = \frac{(-1)(1)(2)}{-2} = \frac{-2}{-2} > 0 \] 4. **Interval \((1, 2)\)**: Test \(x = 1.5\) \[ \frac{(1.5 - 1)(1.5 + 1)^3(1.5 + 2)}{(1.5 - 2)} = \frac{(0.5)(2.5)^3(3.5)}{-0.5} < 0 \] 5. **Interval \((2, ∞)\)**: Test \(x = 3\) \[ \frac{(3 - 1)(3 + 1)^3(3 + 2)}{(3 - 2)} = \frac{(2)(4)^3(5)}{1} > 0 \] ### Step 5: Compile the solution set The expression is negative in the intervals \((-2, -1)\) and \((1, 2)\). ### Final Solution Set The complete solution set of the inequality is: \[ (-2, -1) \cup (1, 2). \]

To solve the inequality \[ \frac{(x^2 - 1)(x + 2)(x + 1)^2}{(x - 2)} < 0, \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS SEC - 1|1 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS|9 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

Write the solution set of inequation |x+1/x|> 2.

Write the solution set of the inequation x+1/xgeq2.

Write the solution set of inequation: |1/(x-2)| <4,x!=4.

If f (x) = (x ^(2) - 3x +4)/(x ^(2)+ 3x +4), then complete solution of 0lt f (x) lt 1, is :

If x in R , find the solution set of inequations. 3x - 2 lt 19 - 4x

Let the solution set of the inequation n(sinx-1/2)(sinx-1/(sqrt(2)))lt=0 in [pi/2,pi] be A and let solution set of equation sin^-1(3x-4x^3)=3sin^-1x be B. Now define a function f:A->B.

Let the solution set of the inequation n(sinx-1/2)(sinx-1/(sqrt(2)))lt=0 in [pi/2,pi] be A and let solution set of equation sin^-1(3x-4x^3)=3sin^-1x be B. Now define a function f:A->B.

Let the solution set of the inequation n(sinx-1/2)(sinx-1/(sqrt(2)))lt=0 in [pi/2,pi] be A and let solution set of equation sin^-1(3x-4x^3)=3sin^-1x be B. Now define a function f:A->B.

The solution set of the inequation |2x-3| lt x-1 , is

Solution of inequality |x-1|lt 0 is

RESONANCE ENGLISH-TEST PAPERS-MATHEMATICS
  1. If ((x^(2)-1)(x+2)(x+1)^(2))/((x-2))lt0 , then complete solution set o...

    Text Solution

    |

  2. The least positive vlaue of the parameter 'a' for which there exist at...

    Text Solution

    |

  3. The locus of the midpoint of a chord of the circle x^2+y^2=4 which sub...

    Text Solution

    |

  4. If f(x)=x + tan x and f si the inverse of g, then g'(x) equals

    Text Solution

    |

  5. Tangents PA and PB are drawn to parabola y^(2)=4x from any arbitrary p...

    Text Solution

    |

  6. If lim(nrarroo) (n.2^(n))/(n(3x-4)^(n)+n.2^(n+1)+2^(n))=1/2 where "n" ...

    Text Solution

    |

  7. Eccentricity of ellipse 2(x-y+1)^(2)+3(x+y+2)^(2)=5 is

    Text Solution

    |

  8. If (tan^(-1)x)^(3)+(tan^(-1)y)^(3)=1-3tan^(-1)x.tan^(-1)y. Then which ...

    Text Solution

    |

  9. If f:RrarrR is a continuous function satisfying f(0)=1 and f(2x)-f(x)=...

    Text Solution

    |

  10. tan^(-1)(sinx)=sin^(-1)(tanx) holds true for

    Text Solution

    |

  11. The function f(x) = (x^(2) - 1)|x^(2) - 3x + 3|+cos (|x|) is not diffe...

    Text Solution

    |

  12. Consider parabola P(1)-=y=x^(2) and P(2)-=y^(2)=-8x and the line L-=lx...

    Text Solution

    |

  13. If the normals at (x(i),y(i)) i=1,2,3,4 to the rectangular hyperbola x...

    Text Solution

    |

  14. Let f(x) = x^(3) - x^(2) + x + 1 and g(x) = {{:(max f(t)",", 0 le t le...

    Text Solution

    |

  15. The sum of the roots of the equation tan^(-1)(x+3)-tan^(-1)(x-3)="sin"...

    Text Solution

    |

  16. For an ellipse having major and minor axis along x and y axes respecti...

    Text Solution

    |

  17. If f:[0,1]rarrR is defined as f(x)={(x^(3)(1-x)"sin"1/(x^(2)) 0ltxle1)...

    Text Solution

    |

  18. If f(x)=root (3)(8x^(3)+mx^(2))-nx such that lim(xrarroo)f(x)=1 then

    Text Solution

    |

  19. For the curve y=4x^3-2x^5, find all the points at which the tangents p...

    Text Solution

    |

  20. Minimum value of (sin^(-1)x)^(2)+(cos^(-1)x)^(2) is greater than

    Text Solution

    |

  21. If y + b = m(1)(x + a) and y + b = m(2)(x+a) are two tangents to the p...

    Text Solution

    |