Home
Class 12
MATHS
The value of (2^(m).3^(2m-n).5^(m+n+3).6...

The value of `(2^(m).3^(2m-n).5^(m+n+3).6^(n+1))/(6^(m+1).10^(n+3).15^(m))`

A

depend on m

B

depend on n

C

is zero

D

does not depend on m and n

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \[ \frac{2^{m} \cdot 3^{2m-n} \cdot 5^{m+n+3} \cdot 6^{n+1}}{6^{m+1} \cdot 10^{n+3} \cdot 15^{m}} \] we will simplify it step by step. ### Step 1: Rewrite the bases First, we can rewrite the bases \(6\), \(10\), and \(15\) in terms of their prime factors: - \(6 = 2 \cdot 3\) - \(10 = 2 \cdot 5\) - \(15 = 3 \cdot 5\) ### Step 2: Substitute the prime factors Now, we substitute these into the expression: \[ 6^{n+1} = (2 \cdot 3)^{n+1} = 2^{n+1} \cdot 3^{n+1} \] \[ 6^{m+1} = (2 \cdot 3)^{m+1} = 2^{m+1} \cdot 3^{m+1} \] \[ 10^{n+3} = (2 \cdot 5)^{n+3} = 2^{n+3} \cdot 5^{n+3} \] \[ 15^{m} = (3 \cdot 5)^{m} = 3^{m} \cdot 5^{m} \] ### Step 3: Substitute back into the expression Now substituting these into our original expression gives: \[ \frac{2^{m} \cdot 3^{2m-n} \cdot 5^{m+n+3} \cdot (2^{n+1} \cdot 3^{n+1})}{(2^{m+1} \cdot 3^{m+1}) \cdot (2^{n+3} \cdot 5^{n+3}) \cdot (3^{m} \cdot 5^{m})} \] ### Step 4: Combine the terms Now we can combine the terms in the numerator and denominator: **Numerator:** \[ 2^{m} \cdot 3^{2m-n} \cdot 5^{m+n+3} \cdot 2^{n+1} \cdot 3^{n+1} = 2^{m+n+1} \cdot 3^{2m-n+n+1} \cdot 5^{m+n+3} = 2^{m+n+1} \cdot 3^{2m+1} \cdot 5^{m+n+3} \] **Denominator:** \[ (2^{m+1} \cdot 3^{m+1}) \cdot (2^{n+3} \cdot 5^{n+3}) \cdot (3^{m} \cdot 5^{m}) = 2^{m+1+n+3} \cdot 3^{m+1+m} \cdot 5^{n+3+m} = 2^{m+n+4} \cdot 3^{2m+1} \cdot 5^{n+m+3} \] ### Step 5: Simplify the expression Now we can simplify the expression: \[ \frac{2^{m+n+1} \cdot 3^{2m+1} \cdot 5^{m+n+3}}{2^{m+n+4} \cdot 3^{2m+1} \cdot 5^{n+m+3}} \] This simplifies to: \[ 2^{(m+n+1)-(m+n+4)} \cdot 3^{(2m+1)-(2m+1)} \cdot 5^{(m+n+3)-(m+n+3)} = 2^{-3} \cdot 3^{0} \cdot 5^{0} = \frac{1}{2^3} = \frac{1}{8} \] ### Final Answer Thus, the value of the expression is \[ \frac{1}{8} \]

To solve the expression \[ \frac{2^{m} \cdot 3^{2m-n} \cdot 5^{m+n+3} \cdot 6^{n+1}}{6^{m+1} \cdot 10^{n+3} \cdot 15^{m}} \] we will simplify it step by step. ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS SEC - 1|1 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS|9 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

The value of (m+n)^2+(m-n)^2 is:

Evaluate : (2^(n)xx6^(m+1)xx10^(m-n)xx15^(m+n-2))/(4^(m)xx3^(2m+n)xx25^(m-1))

The value of .^(n)C_(1)+.^(n+1)C_(2)+.^(n+2)C_(3)+"….."+.^(n+m-1)C_(m) is equal to a. .^(m+n)C_(n) - 1 b. .^(m+n)C_(n-1) c. .^(m)C_(1) + ^(m+1)C_(2) + ^(m+2)C_(3) + "…." + ^(m+n-1)C_(n) d. .^(m+n)C_(m) - 1

Show that : ((a^(m))/(a^(-n)))^(m-n)xx((a^(n))/(a^(-1)))^(n-1)xx((a^(l))/(a^(-m)))^(l-m)=1

Evaluate sum_(m=1)^(oo)sum_(n=1)^(oo)(m^(2)n)/(3^(m)(n*3^(m)+m*3^(n))) .

lim_(n to oo){(1^(m)+2^(m)+3^(m)+...+ n^(m))/(n^(m+1))} equals

IfI_(m , n)=int_0^(pi/2)sin^m xcos^n xdx , Then show that I_(m , n)=(m-1)/(m+n)I_(m-2,n)(m ,n in N) Hence, prove that I_(m , n)=f(x)={((n-1)(n-3)(m-5)(n-1)(n-3)(n-5))/((m+n)(m+n-2)(m+n-4))pi/4 when both m and n are even ((m-1)(m-3)(m-5)(n-1)(n-3)(n-5))/((m+n)(m+n-2)(m+n-4))}

The value of ^n C_1+^(n+1)C_2+^(n+2)C_3++^(n+m-1)C_m is equal to

Find the values of m and n if : 4^(2m)=(root(3)(16))^(-(6)/(n))=(sqrt(8))^(2)

If L=lim_(nto oo) (n^(3)(e^(1//n)+e^(2//n)+………+e))/((n+1)^(m)(1^(m)+4^(m)+….+n^(2m))) is non zero finite real, then

RESONANCE ENGLISH-TEST PAPERS-MATHEMATICS
  1. The value of (2^(m).3^(2m-n).5^(m+n+3).6^(n+1))/(6^(m+1).10^(n+3).15^(...

    Text Solution

    |

  2. The least positive vlaue of the parameter 'a' for which there exist at...

    Text Solution

    |

  3. The locus of the midpoint of a chord of the circle x^2+y^2=4 which sub...

    Text Solution

    |

  4. If f(x)=x + tan x and f si the inverse of g, then g'(x) equals

    Text Solution

    |

  5. Tangents PA and PB are drawn to parabola y^(2)=4x from any arbitrary p...

    Text Solution

    |

  6. If lim(nrarroo) (n.2^(n))/(n(3x-4)^(n)+n.2^(n+1)+2^(n))=1/2 where "n" ...

    Text Solution

    |

  7. Eccentricity of ellipse 2(x-y+1)^(2)+3(x+y+2)^(2)=5 is

    Text Solution

    |

  8. If (tan^(-1)x)^(3)+(tan^(-1)y)^(3)=1-3tan^(-1)x.tan^(-1)y. Then which ...

    Text Solution

    |

  9. If f:RrarrR is a continuous function satisfying f(0)=1 and f(2x)-f(x)=...

    Text Solution

    |

  10. tan^(-1)(sinx)=sin^(-1)(tanx) holds true for

    Text Solution

    |

  11. The function f(x) = (x^(2) - 1)|x^(2) - 3x + 3|+cos (|x|) is not diffe...

    Text Solution

    |

  12. Consider parabola P(1)-=y=x^(2) and P(2)-=y^(2)=-8x and the line L-=lx...

    Text Solution

    |

  13. If the normals at (x(i),y(i)) i=1,2,3,4 to the rectangular hyperbola x...

    Text Solution

    |

  14. Let f(x) = x^(3) - x^(2) + x + 1 and g(x) = {{:(max f(t)",", 0 le t le...

    Text Solution

    |

  15. The sum of the roots of the equation tan^(-1)(x+3)-tan^(-1)(x-3)="sin"...

    Text Solution

    |

  16. For an ellipse having major and minor axis along x and y axes respecti...

    Text Solution

    |

  17. If f:[0,1]rarrR is defined as f(x)={(x^(3)(1-x)"sin"1/(x^(2)) 0ltxle1)...

    Text Solution

    |

  18. If f(x)=root (3)(8x^(3)+mx^(2))-nx such that lim(xrarroo)f(x)=1 then

    Text Solution

    |

  19. For the curve y=4x^3-2x^5, find all the points at which the tangents p...

    Text Solution

    |

  20. Minimum value of (sin^(-1)x)^(2)+(cos^(-1)x)^(2) is greater than

    Text Solution

    |

  21. If y + b = m(1)(x + a) and y + b = m(2)(x+a) are two tangents to the p...

    Text Solution

    |