Home
Class 12
MATHS
If solution set of Inequality (x^(2)+x-2...

If solution set of Inequality `(x^(2)+x-2)(x^(2)+x-16)ge -40` is `x epsilon(-oo, -4]uu[a,b]uu[c,oo)` then `a+b-c` is

A

`-2`

B

`-3`

C

`-4`

D

`-6`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \((x^2 + x - 2)(x^2 + x - 16) \ge -40\), we will follow these steps: ### Step 1: Rearranging the Inequality We start by rearranging the inequality: \[ (x^2 + x - 2)(x^2 + x - 16) + 40 \ge 0 \] This simplifies to: \[ (x^2 + x - 2)(x^2 + x - 16) + 40 \ge 0 \] ### Step 2: Expanding the Left Side Next, we expand the left-hand side: \[ (x^2 + x - 2)(x^2 + x - 16) = x^4 + x^3 - 16x^2 + x^3 + x^2 - 2x - 32 \] Combining like terms gives us: \[ x^4 + 2x^3 - 18x^2 - 18x + 32 \] ### Step 3: Setting the Inequality Now we set up the inequality: \[ x^4 + 2x^3 - 18x^2 - 18x + 32 \ge 0 \] ### Step 4: Finding Roots To find the roots of the polynomial, we can use synthetic division or the Rational Root Theorem. We can test \(x = -4\) as a potential root: \[ (-4)^4 + 2(-4)^3 - 18(-4)^2 - 18(-4) + 32 = 0 \] Thus, \(x + 4\) is a factor. We can divide the polynomial by \(x + 4\) to find the other factors. ### Step 5: Polynomial Division Dividing \(x^4 + 2x^3 - 18x^2 - 18x + 32\) by \(x + 4\) gives: \[ x^4 + 2x^3 - 18x^2 - 18x + 32 = (x + 4)(x^3 - 2x^2 - 10x + 8) \] ### Step 6: Finding Further Roots Next, we need to factor \(x^3 - 2x^2 - 10x + 8\). We can test for rational roots again and find that \(x = -2\) and \(x = 3\) are roots. ### Step 7: Final Factorization Thus, we can factor the polynomial completely: \[ (x + 4)(x + 2)(x - 3)(x + 3) \ge 0 \] ### Step 8: Analyzing Intervals The critical points are \(x = -4, -3, -2, 3\). We analyze the sign of the product in the intervals: 1. \( (-\infty, -4) \) 2. \( (-4, -3) \) 3. \( (-3, -2) \) 4. \( (-2, 3) \) 5. \( (3, \infty) \) ### Step 9: Testing Intervals Testing values in each interval: - For \(x < -4\), the product is positive. - Between \(-4\) and \(-3\), the product is negative. - Between \(-3\) and \(-2\), the product is positive. - Between \(-2\) and \(3\), the product is negative. - For \(x > 3\), the product is positive. ### Step 10: Solution Set Thus, the solution set is: \[ (-\infty, -4] \cup [-3, -2] \cup [3, \infty) \] This matches the given solution set \(x \in (-\infty, -4] \cup [a, b] \cup [c, \infty)\) where \(a = -3\), \(b = -2\), \(c = 3\). ### Step 11: Finding \(a + b - c\) Now we calculate: \[ a + b - c = -3 + (-2) - 3 = -8 \] ### Final Answer Thus, the final answer is: \[ \boxed{-8} \]

To solve the inequality \((x^2 + x - 2)(x^2 + x - 16) \ge -40\), we will follow these steps: ### Step 1: Rearranging the Inequality We start by rearranging the inequality: \[ (x^2 + x - 2)(x^2 + x - 16) + 40 \ge 0 \] This simplifies to: ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS SEC - 1|1 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS|9 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

Complete solution set of the inequation (x^2-1)(x^2-6x+8)geq0 is (a) x in [-1,1]uu[2,4] (b) x in (-oo,-1)uu[1,2]uu[4,oo] (c) x in [-1,2]uu[4,oo] (d) none of these

If the solution set of the inequaiton (x+4)(x-1)(x-3)(x+1)<0 is x in (a , b)uu(c , d) then (a) a+b+c+d=1 (b) a+b+c+d=2 (c) a b c d=12 (d) a b+c d=7

Solution set of the inequation (x^2+4x+4)/(2x^2-x-1)>0, is x in (-oo,-2)uu(-2,1) x in (-oo,-2)uu(-2,-1/2)uu(1,oo) x in (-oo,-2)uu(-1/2,1)uu(1,oo) x in (-oo,1)

If the solution of the equation |(x^4-9) -(x^2 + 3)| = |x^4 - 9| - |x^2 + 3| is (-oo,p]uu[q,oo) then

Let solution of inequality (16^((1)/(x)))/2^(x+3)gt1 is (-oo, a) cup (b, c) then

Solution set of inequality ((e^x-1)(2x-3)(x^2+x+2))/((sinx-2)(x+1)^2x)lt=0 is [3/2,oo) b. (-oo,-1)uu[3/2,oo) c. [-1,0)uu[3/2,oo) d. R-{0,-1}

The solution of the inequality (tan^(-1)x)^2-3tan^(-1)x+2geq0 is- a. (-oo,\ t a n1]uu[t a n2,\ oo) b. (-oo,\ t a n1] c. (-oo,\ -t a n1]uu[t a n2,oo) d. [-1,\ 1]-\ (-(sqrt(2))/2,(sqrt(2))/2)

If the solution of the equation |(x^4-9)-(x^2+3)|=|x^4-9|-|x^2+3| is (-oo, p]uu[q ,oo) then value of p+q is (a) p=-3 (b) p=-2 (a) q=2 (d) q=3

The solution set of the inequality max {1-x^2,|x-1|}<1 is (-oo,0)uu(1,oo) (b) (-oo,0)uu(2,oo) (0,2) (d) (0,2)

Solution set of the inequation, (x^2-5x+6)/(x^2+x+1)<0 is x in (-oo,2) (b) x in (2,3) x in (-oo,2)uu(3,oo) (d) x in (3,oo)

RESONANCE ENGLISH-TEST PAPERS-MATHEMATICS
  1. If solution set of Inequality (x^(2)+x-2)(x^(2)+x-16)ge -40 is x epsi...

    Text Solution

    |

  2. The least positive vlaue of the parameter 'a' for which there exist at...

    Text Solution

    |

  3. The locus of the midpoint of a chord of the circle x^2+y^2=4 which sub...

    Text Solution

    |

  4. If f(x)=x + tan x and f si the inverse of g, then g'(x) equals

    Text Solution

    |

  5. Tangents PA and PB are drawn to parabola y^(2)=4x from any arbitrary p...

    Text Solution

    |

  6. If lim(nrarroo) (n.2^(n))/(n(3x-4)^(n)+n.2^(n+1)+2^(n))=1/2 where "n" ...

    Text Solution

    |

  7. Eccentricity of ellipse 2(x-y+1)^(2)+3(x+y+2)^(2)=5 is

    Text Solution

    |

  8. If (tan^(-1)x)^(3)+(tan^(-1)y)^(3)=1-3tan^(-1)x.tan^(-1)y. Then which ...

    Text Solution

    |

  9. If f:RrarrR is a continuous function satisfying f(0)=1 and f(2x)-f(x)=...

    Text Solution

    |

  10. tan^(-1)(sinx)=sin^(-1)(tanx) holds true for

    Text Solution

    |

  11. The function f(x) = (x^(2) - 1)|x^(2) - 3x + 3|+cos (|x|) is not diffe...

    Text Solution

    |

  12. Consider parabola P(1)-=y=x^(2) and P(2)-=y^(2)=-8x and the line L-=lx...

    Text Solution

    |

  13. If the normals at (x(i),y(i)) i=1,2,3,4 to the rectangular hyperbola x...

    Text Solution

    |

  14. Let f(x) = x^(3) - x^(2) + x + 1 and g(x) = {{:(max f(t)",", 0 le t le...

    Text Solution

    |

  15. The sum of the roots of the equation tan^(-1)(x+3)-tan^(-1)(x-3)="sin"...

    Text Solution

    |

  16. For an ellipse having major and minor axis along x and y axes respecti...

    Text Solution

    |

  17. If f:[0,1]rarrR is defined as f(x)={(x^(3)(1-x)"sin"1/(x^(2)) 0ltxle1)...

    Text Solution

    |

  18. If f(x)=root (3)(8x^(3)+mx^(2))-nx such that lim(xrarroo)f(x)=1 then

    Text Solution

    |

  19. For the curve y=4x^3-2x^5, find all the points at which the tangents p...

    Text Solution

    |

  20. Minimum value of (sin^(-1)x)^(2)+(cos^(-1)x)^(2) is greater than

    Text Solution

    |

  21. If y + b = m(1)(x + a) and y + b = m(2)(x+a) are two tangents to the p...

    Text Solution

    |