Home
Class 12
MATHS
If 2le||x-2|-1|le3, then x belongs to in...

If `2le||x-2|-1|le3`, then `x` belongs to interval

A

`[-2, -1]uu[5, 6]`

B

`[-4, 6]`

C

`(-oo, -4]uu[6, oo]`

D

`[0, 1]uu[5,6]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( 2 \leq | |x - 2| - 1 | \leq 3 \), we will break it down into two parts: 1. **Finding the values for \( ||x - 2| - 1| \geq 2 \)** 2. **Finding the values for \( ||x - 2| - 1| \leq 3 \)** ### Step 1: Solve \( ||x - 2| - 1| \geq 2 \) This can be split into two cases: **Case 1:** \[ |x - 2| - 1 \geq 2 \] This simplifies to: \[ |x - 2| \geq 3 \] This further breaks down into two subcases: - \( x - 2 \geq 3 \) which gives \( x \geq 5 \) - \( x - 2 \leq -3 \) which gives \( x \leq -1 \) **Case 2:** \[ |x - 2| - 1 \leq -2 \] This simplifies to: \[ |x - 2| \leq -1 \] Since the absolute value cannot be negative, this case does not yield any valid solutions. ### Step 2: Solve \( ||x - 2| - 1| \leq 3 \) This can also be split into two cases: **Case 1:** \[ |x - 2| - 1 \leq 3 \] This simplifies to: \[ |x - 2| \leq 4 \] This further breaks down into: - \( x - 2 \leq 4 \) which gives \( x \leq 6 \) - \( x - 2 \geq -4 \) which gives \( x \geq -2 \) **Case 2:** \[ |x - 2| - 1 \geq -3 \] This simplifies to: \[ |x - 2| \geq -2 \] Since the absolute value is always non-negative, this case is always true. ### Step 3: Combine the results From Step 1, we found: - \( x \geq 5 \) or \( x \leq -1 \) From Step 2, we found: - \( -2 \leq x \leq 6 \) Now we need to find the intersection of these results: 1. **For \( x \geq 5 \)** and \( -2 \leq x \leq 6 \): - This gives \( x \in [5, 6] \). 2. **For \( x \leq -1 \)** and \( -2 \leq x \leq 6 \): - This gives \( x \in [-2, -1] \). ### Final Solution Thus, the solution for \( x \) belongs to the intervals: \[ [-2, -1] \cup [5, 6] \]

To solve the inequality \( 2 \leq | |x - 2| - 1 | \leq 3 \), we will break it down into two parts: 1. **Finding the values for \( ||x - 2| - 1| \geq 2 \)** 2. **Finding the values for \( ||x - 2| - 1| \leq 3 \)** ### Step 1: Solve \( ||x - 2| - 1| \geq 2 \) This can be split into two cases: ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS SEC - 1|1 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS|9 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

If -1 le [2x^2 -3] lt 2 , then x belongs to

solve 1le|x-1|le3 ,

If P (sin theta, 1//sqrt(2)) and Q(1//sqrt(2), cos theta), -pi le theta le pi are two points on the same side of the line x-y=0, then theta belongs to the interval

If 5 ^(x) + (2 sqrt3) ^(2x) -169 le 0 is true for x lying in the interval :

If the function f(x) ={x+1 if x le 1 , 2x+1 if 1 lt x le 2 and g(x) = {x^2 if -1 le x le 2 , x+2 if 2 le x le 3 then the number of roots of the equation f(g(x))=2

If -2le3x-7le8 , find x.

If f (x)= {{:(1+x, 0 le x le 2),( 3x-2, 2 lt x le 3):}, then f (f(x)) is not differentiable at:

Solve 1 le |x-2| le 3

Let f(x)=(x^(2)+2)/([x]),1 le x le3 , where [.] is the greatest integer function. Then the least value of f(x) is

The value of x if 0 le |2x + 3| le 3 belongs to

RESONANCE ENGLISH-TEST PAPERS-MATHEMATICS
  1. If 2le||x-2|-1|le3, then x belongs to interval

    Text Solution

    |

  2. The least positive vlaue of the parameter 'a' for which there exist at...

    Text Solution

    |

  3. The locus of the midpoint of a chord of the circle x^2+y^2=4 which sub...

    Text Solution

    |

  4. If f(x)=x + tan x and f si the inverse of g, then g'(x) equals

    Text Solution

    |

  5. Tangents PA and PB are drawn to parabola y^(2)=4x from any arbitrary p...

    Text Solution

    |

  6. If lim(nrarroo) (n.2^(n))/(n(3x-4)^(n)+n.2^(n+1)+2^(n))=1/2 where "n" ...

    Text Solution

    |

  7. Eccentricity of ellipse 2(x-y+1)^(2)+3(x+y+2)^(2)=5 is

    Text Solution

    |

  8. If (tan^(-1)x)^(3)+(tan^(-1)y)^(3)=1-3tan^(-1)x.tan^(-1)y. Then which ...

    Text Solution

    |

  9. If f:RrarrR is a continuous function satisfying f(0)=1 and f(2x)-f(x)=...

    Text Solution

    |

  10. tan^(-1)(sinx)=sin^(-1)(tanx) holds true for

    Text Solution

    |

  11. The function f(x) = (x^(2) - 1)|x^(2) - 3x + 3|+cos (|x|) is not diffe...

    Text Solution

    |

  12. Consider parabola P(1)-=y=x^(2) and P(2)-=y^(2)=-8x and the line L-=lx...

    Text Solution

    |

  13. If the normals at (x(i),y(i)) i=1,2,3,4 to the rectangular hyperbola x...

    Text Solution

    |

  14. Let f(x) = x^(3) - x^(2) + x + 1 and g(x) = {{:(max f(t)",", 0 le t le...

    Text Solution

    |

  15. The sum of the roots of the equation tan^(-1)(x+3)-tan^(-1)(x-3)="sin"...

    Text Solution

    |

  16. For an ellipse having major and minor axis along x and y axes respecti...

    Text Solution

    |

  17. If f:[0,1]rarrR is defined as f(x)={(x^(3)(1-x)"sin"1/(x^(2)) 0ltxle1)...

    Text Solution

    |

  18. If f(x)=root (3)(8x^(3)+mx^(2))-nx such that lim(xrarroo)f(x)=1 then

    Text Solution

    |

  19. For the curve y=4x^3-2x^5, find all the points at which the tangents p...

    Text Solution

    |

  20. Minimum value of (sin^(-1)x)^(2)+(cos^(-1)x)^(2) is greater than

    Text Solution

    |

  21. If y + b = m(1)(x + a) and y + b = m(2)(x+a) are two tangents to the p...

    Text Solution

    |