Home
Class 12
MATHS
Statement - 1 : If x gt 1 then log(10)x ...

Statement - 1 : If `x gt 1` then `log_(10)x lt log_(3)x lt log_(e )x lt log_(2)x`.
Statement - 2 : If `0 lt x lt 1`, then `log_(x)a gt log_(x)b implies a lt b`.

A

Statement - 1 is True, Statement - 2 si True , Statement -2 is a correct explanation for Statement - 1

B

Statement -1 is True, Statement -2 si True, Statemetn -2 is NOT a correct explanation for Statement -1

C

Statement - 1 is True, Statement - 2 is False

D

Statement - 1 is False, Statement - 2 is True

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given statements, we will analyze each statement step by step. ### Step 1: Analyzing Statement 1 **Statement 1**: If \( x > 1 \), then \( \log_{10} x < \log_{3} x < \log_{e} x < \log_{2} x \). 1. **Understanding Logarithmic Functions**: The logarithm function \( \log_b x \) is an increasing function when \( b > 1 \). This means that if \( b_1 < b_2 \), then \( \log_{b_1} x < \log_{b_2} x \) for \( x > 1 \). 2. **Identifying the Bases**: Here, the bases are \( 10, 3, e, \) and \( 2 \). We can order these bases: \( 10 > 3 > e > 2 \). 3. **Applying the Property**: Since \( x > 1 \), we can apply the property of logarithms: - Since \( 10 > 3 \), we have \( \log_{10} x < \log_{3} x \). - Since \( 3 > e \), we have \( \log_{3} x < \log_{e} x \). - Since \( e > 2 \), we have \( \log_{e} x < \log_{2} x \). 4. **Combining the Inequalities**: Therefore, we can combine these inequalities to conclude: \[ \log_{10} x < \log_{3} x < \log_{e} x < \log_{2} x \] **Conclusion for Statement 1**: Statement 1 is true. ### Step 2: Analyzing Statement 2 **Statement 2**: If \( 0 < x < 1 \), then \( \log_{x} a > \log_{x} b \) implies \( a < b \). 1. **Understanding Logarithmic Inequalities**: For \( 0 < x < 1 \), the logarithmic function \( \log_{x} a \) is a decreasing function. This means that if \( \log_{x} a > \log_{x} b \), then \( a \) must be less than \( b \). 2. **Applying the Property**: - If \( \log_{x} a > \log_{x} b \), it implies that \( a \) is positioned to the left of \( b \) on the number line when considering their logarithmic values. - Hence, we conclude that \( a < b \). **Conclusion for Statement 2**: Statement 2 is true. ### Final Conclusion - **Statement 1** is true. - **Statement 2** is also true, but it does not provide a correct explanation for Statement 1.

To solve the given statements, we will analyze each statement step by step. ### Step 1: Analyzing Statement 1 **Statement 1**: If \( x > 1 \), then \( \log_{10} x < \log_{3} x < \log_{e} x < \log_{2} x \). 1. **Understanding Logarithmic Functions**: The logarithm function \( \log_b x \) is an increasing function when \( b > 1 \). This means that if \( b_1 < b_2 \), then \( \log_{b_1} x < \log_{b_2} x \) for \( x > 1 \). 2. **Identifying the Bases**: Here, the bases are \( 10, 3, e, \) and \( 2 \). We can order these bases: \( 10 > 3 > e > 2 \). 3. **Applying the Property**: Since \( x > 1 \), we can apply the property of logarithms: ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS SEC - 1|1 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS|9 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

|log_(3) x| lt 2

Statement-1: "log"_(10)x lt "log"_(pi) x lt "log"_(e) x lt "log"_(2) x Statement-2: x lt y rArr "log"_(a) x gt "log"_(a) y " when " 0 lt a lt 1

Solve log_(2)|x| lt 3

Find x if log_(2) log_(1//2) log_(3) x gt 0

Solve 1 lt log_(2)(x-2) le 2 .

Solve log_(2)|x-1| lt 1 .

Statemen-1: If x lt 1 , then the least value of "log"_(2)x^(3) - "log"_(x) (0.125)" is "6 .

Statement-1 : f(x) = log_(10)(log_(1/x)x) will not be defined for any value of x. and Statement -2 : log_(1//x)x = -1, AA x gt 0, x != 1

Statement-1: 0 lt x lt y rArr "log"_(a) x gt "log"_(a) y, where a gt 1 Statement-2: "When" a gt 1, "log"_(a) x is an increasing function.

Solve the inequality: log_(x)2.log_(2x)2. log_(2)4x gt 1

RESONANCE ENGLISH-TEST PAPERS-MATHEMATICS
  1. Statement - 1 : If x gt 1 then log(10)x lt log(3)x lt log(e )x lt log(...

    Text Solution

    |

  2. The least positive vlaue of the parameter 'a' for which there exist at...

    Text Solution

    |

  3. The locus of the midpoint of a chord of the circle x^2+y^2=4 which sub...

    Text Solution

    |

  4. If f(x)=x + tan x and f si the inverse of g, then g'(x) equals

    Text Solution

    |

  5. Tangents PA and PB are drawn to parabola y^(2)=4x from any arbitrary p...

    Text Solution

    |

  6. If lim(nrarroo) (n.2^(n))/(n(3x-4)^(n)+n.2^(n+1)+2^(n))=1/2 where "n" ...

    Text Solution

    |

  7. Eccentricity of ellipse 2(x-y+1)^(2)+3(x+y+2)^(2)=5 is

    Text Solution

    |

  8. If (tan^(-1)x)^(3)+(tan^(-1)y)^(3)=1-3tan^(-1)x.tan^(-1)y. Then which ...

    Text Solution

    |

  9. If f:RrarrR is a continuous function satisfying f(0)=1 and f(2x)-f(x)=...

    Text Solution

    |

  10. tan^(-1)(sinx)=sin^(-1)(tanx) holds true for

    Text Solution

    |

  11. The function f(x) = (x^(2) - 1)|x^(2) - 3x + 3|+cos (|x|) is not diffe...

    Text Solution

    |

  12. Consider parabola P(1)-=y=x^(2) and P(2)-=y^(2)=-8x and the line L-=lx...

    Text Solution

    |

  13. If the normals at (x(i),y(i)) i=1,2,3,4 to the rectangular hyperbola x...

    Text Solution

    |

  14. Let f(x) = x^(3) - x^(2) + x + 1 and g(x) = {{:(max f(t)",", 0 le t le...

    Text Solution

    |

  15. The sum of the roots of the equation tan^(-1)(x+3)-tan^(-1)(x-3)="sin"...

    Text Solution

    |

  16. For an ellipse having major and minor axis along x and y axes respecti...

    Text Solution

    |

  17. If f:[0,1]rarrR is defined as f(x)={(x^(3)(1-x)"sin"1/(x^(2)) 0ltxle1)...

    Text Solution

    |

  18. If f(x)=root (3)(8x^(3)+mx^(2))-nx such that lim(xrarroo)f(x)=1 then

    Text Solution

    |

  19. For the curve y=4x^3-2x^5, find all the points at which the tangents p...

    Text Solution

    |

  20. Minimum value of (sin^(-1)x)^(2)+(cos^(-1)x)^(2) is greater than

    Text Solution

    |

  21. If y + b = m(1)(x + a) and y + b = m(2)(x+a) are two tangents to the p...

    Text Solution

    |