Home
Class 12
MATHS
The set of all values of ' x ' which sat...

The set of all values of `' x '` which satisfies the inequation `|1-(|x|)/(1+|x|)|geq1/2` is: `[-1,1]` (b) `(-oo,-1)` `(1,oo)` (d) `(0,1)`

A

`[(3)/(2), oo)`

B

`(-oo, -1)uu[(3)/(2), oo)`

C

`(-1, 0)uu[(3)/(2), oo)`

D

`R - {0, -1}`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequation \( |1 - \frac{|x|}{1 + |x|}| \geq \frac{1}{2} \), we will break it down step by step. ### Step 1: Analyze the expression The expression inside the absolute value is \( 1 - \frac{|x|}{1 + |x|} \). We need to find when this expression is greater than or equal to \( \frac{1}{2} \) or less than or equal to \( -\frac{1}{2} \). ### Step 2: Set up the two cases We will consider two cases based on the definition of absolute value: 1. \( 1 - \frac{|x|}{1 + |x|} \geq \frac{1}{2} \) 2. \( 1 - \frac{|x|}{1 + |x|} \leq -\frac{1}{2} \) ### Step 3: Solve the first case **Case 1:** \[ 1 - \frac{|x|}{1 + |x|} \geq \frac{1}{2} \] Subtract 1 from both sides: \[ -\frac{|x|}{1 + |x|} \geq -\frac{1}{2} \] Multiply through by -1 (remember to flip the inequality): \[ \frac{|x|}{1 + |x|} \leq \frac{1}{2} \] Cross-multiply: \[ 2|x| \leq 1 + |x| \] Rearranging gives: \[ 2|x| - |x| \leq 1 \] \[ |x| \leq 1 \] This means: \[ -1 \leq x \leq 1 \] ### Step 4: Solve the second case **Case 2:** \[ 1 - \frac{|x|}{1 + |x|} \leq -\frac{1}{2} \] Subtract 1 from both sides: \[ -\frac{|x|}{1 + |x|} \leq -\frac{3}{2} \] Multiply through by -1 (flip the inequality): \[ \frac{|x|}{1 + |x|} \geq \frac{3}{2} \] Cross-multiply: \[ 2|x| \geq 3 + 3|x| \] Rearranging gives: \[ 2|x| - 3|x| \geq 3 \] \[ -|x| \geq 3 \] This is not possible since \( |x| \) cannot be negative. Thus, there are no solutions from this case. ### Conclusion The only valid solution comes from Case 1, which gives us: \[ x \in [-1, 1] \] ### Final Answer The set of all values of \( x \) which satisfies the inequation is: \[ \boxed{[-1, 1]} \]

To solve the inequation \( |1 - \frac{|x|}{1 + |x|}| \geq \frac{1}{2} \), we will break it down step by step. ### Step 1: Analyze the expression The expression inside the absolute value is \( 1 - \frac{|x|}{1 + |x|} \). We need to find when this expression is greater than or equal to \( \frac{1}{2} \) or less than or equal to \( -\frac{1}{2} \). ### Step 2: Set up the two cases We will consider two cases based on the definition of absolute value: 1. \( 1 - \frac{|x|}{1 + |x|} \geq \frac{1}{2} \) ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS SEC - 1|1 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS|9 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

The set of all values of x satisfying the inequations (x-1)^(3) (x+1) lt 0 is

The set of all values of x satisfying the inequations |x-1| le 5 " and " |x|ge 2, is

Solve the following inequation: (x+1)/(x+2)geq1

Find the set of all real values of x satisfying the inequality sec^(-1)xgt tan^(-1)x .

The greatest ' x ' satisfying the inequation (2x+1)/3-(3x-1)/2>1 is: (a) -4 (b) 4 (c) 1 (d) -1

The set of real values of x satisfying the inequality log_(x+1/x)(log_2((x-1)/(x+2))) gt 0, is equal to

Write the solution set of the inequation |x-1|geq|x-3|dot

The solution set of the inequality max {1-x^2,|x-1|}<1 is (-oo,0)uu(1,oo) (b) (-oo,0)uu(2,oo) (0,2) (d) (0,2)

Find the set of values of a for which the equation |x-1|^2+(a-1)|x-1|+1=0 has a solution, [2,5] b. [-3,-1] c. [0,oo) d. (-oo,-1]

Set of all values of x satisfying in inequation cos^(-1)sqrt(x)>sin^(-1)sqrt(x), is a. (0,1/2) b. [0,1/2) c. (1/2,1) d. (1/2,1)

RESONANCE ENGLISH-TEST PAPERS-MATHEMATICS
  1. The set of all values of ' x ' which satisfies the inequation |1-(|x|)...

    Text Solution

    |

  2. The least positive vlaue of the parameter 'a' for which there exist at...

    Text Solution

    |

  3. The locus of the midpoint of a chord of the circle x^2+y^2=4 which sub...

    Text Solution

    |

  4. If f(x)=x + tan x and f si the inverse of g, then g'(x) equals

    Text Solution

    |

  5. Tangents PA and PB are drawn to parabola y^(2)=4x from any arbitrary p...

    Text Solution

    |

  6. If lim(nrarroo) (n.2^(n))/(n(3x-4)^(n)+n.2^(n+1)+2^(n))=1/2 where "n" ...

    Text Solution

    |

  7. Eccentricity of ellipse 2(x-y+1)^(2)+3(x+y+2)^(2)=5 is

    Text Solution

    |

  8. If (tan^(-1)x)^(3)+(tan^(-1)y)^(3)=1-3tan^(-1)x.tan^(-1)y. Then which ...

    Text Solution

    |

  9. If f:RrarrR is a continuous function satisfying f(0)=1 and f(2x)-f(x)=...

    Text Solution

    |

  10. tan^(-1)(sinx)=sin^(-1)(tanx) holds true for

    Text Solution

    |

  11. The function f(x) = (x^(2) - 1)|x^(2) - 3x + 3|+cos (|x|) is not diffe...

    Text Solution

    |

  12. Consider parabola P(1)-=y=x^(2) and P(2)-=y^(2)=-8x and the line L-=lx...

    Text Solution

    |

  13. If the normals at (x(i),y(i)) i=1,2,3,4 to the rectangular hyperbola x...

    Text Solution

    |

  14. Let f(x) = x^(3) - x^(2) + x + 1 and g(x) = {{:(max f(t)",", 0 le t le...

    Text Solution

    |

  15. The sum of the roots of the equation tan^(-1)(x+3)-tan^(-1)(x-3)="sin"...

    Text Solution

    |

  16. For an ellipse having major and minor axis along x and y axes respecti...

    Text Solution

    |

  17. If f:[0,1]rarrR is defined as f(x)={(x^(3)(1-x)"sin"1/(x^(2)) 0ltxle1)...

    Text Solution

    |

  18. If f(x)=root (3)(8x^(3)+mx^(2))-nx such that lim(xrarroo)f(x)=1 then

    Text Solution

    |

  19. For the curve y=4x^3-2x^5, find all the points at which the tangents p...

    Text Solution

    |

  20. Minimum value of (sin^(-1)x)^(2)+(cos^(-1)x)^(2) is greater than

    Text Solution

    |

  21. If y + b = m(1)(x + a) and y + b = m(2)(x+a) are two tangents to the p...

    Text Solution

    |