Home
Class 12
MATHS
Roots of the equation (x^2-4x+3)+lamda(x...

Roots of the equation `(x^2-4x+3)+lamda(x^2-6x+8)=0` , `lamda in R` will be

A

always real

B

real only when `lambda` is positive

C

real only when `lambda` is negative

D

always is magnary

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \((x^2 - 4x + 3) + \lambda (x^2 - 6x + 8) = 0\) for the roots, we can follow these steps: ### Step 1: Rewrite the Equation Start by rewriting the given equation: \[ x^2 - 4x + 3 + \lambda (x^2 - 6x + 8) = 0 \] This can be rearranged as: \[ (1 + \lambda)x^2 + (-4 + 6\lambda)x + (3 + 8\lambda) = 0 \] ### Step 2: Identify Coefficients From the rearranged equation, we can identify the coefficients: - \(a = 1 + \lambda\) - \(b = -4 + 6\lambda\) - \(c = 3 + 8\lambda\) ### Step 3: Calculate the Discriminant The discriminant \(D\) of a quadratic equation \(ax^2 + bx + c = 0\) is given by: \[ D = b^2 - 4ac \] Substituting the values of \(a\), \(b\), and \(c\): \[ D = (-4 + 6\lambda)^2 - 4(1 + \lambda)(3 + 8\lambda) \] ### Step 4: Expand the Discriminant Now, we will expand \(D\): 1. Calculate \(b^2\): \[ (-4 + 6\lambda)^2 = 16 - 48\lambda + 36\lambda^2 \] 2. Calculate \(4ac\): \[ 4(1 + \lambda)(3 + 8\lambda) = 4(3 + 8\lambda + 3\lambda + 8\lambda^2) = 12 + 44\lambda + 32\lambda^2 \] 3. Combine to find \(D\): \[ D = (16 - 48\lambda + 36\lambda^2) - (12 + 44\lambda + 32\lambda^2) \] \[ D = 16 - 48\lambda + 36\lambda^2 - 12 - 44\lambda - 32\lambda^2 \] \[ D = 4 + 4\lambda^2 - 92\lambda \] ### Step 5: Analyze the Discriminant For the roots to be real, the discriminant must be greater than or equal to zero: \[ 4 + 4\lambda^2 - 92\lambda \geq 0 \] Dividing the entire inequality by 4: \[ 1 + \lambda^2 - 23\lambda \geq 0 \] Rearranging gives: \[ \lambda^2 - 23\lambda + 1 \geq 0 \] ### Step 6: Find the Roots of the Quadratic To find the roots of the quadratic equation \(\lambda^2 - 23\lambda + 1 = 0\), we use the quadratic formula: \[ \lambda = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] where \(a = 1\), \(b = -23\), and \(c = 1\): \[ \lambda = \frac{23 \pm \sqrt{(-23)^2 - 4 \cdot 1 \cdot 1}}{2 \cdot 1} = \frac{23 \pm \sqrt{529 - 4}}{2} = \frac{23 \pm \sqrt{525}}{2} \] Calculating \(\sqrt{525}\): \[ \sqrt{525} = \sqrt{25 \cdot 21} = 5\sqrt{21} \] Thus, the roots are: \[ \lambda = \frac{23 \pm 5\sqrt{21}}{2} \] ### Step 7: Determine the Intervals The quadratic \(\lambda^2 - 23\lambda + 1\) opens upwards (since the coefficient of \(\lambda^2\) is positive). Therefore, it is non-negative outside the roots: \[ \lambda \leq \frac{23 - 5\sqrt{21}}{2} \quad \text{or} \quad \lambda \geq \frac{23 + 5\sqrt{21}}{2} \] ### Conclusion The roots of the equation \((x^2 - 4x + 3) + \lambda (x^2 - 6x + 8) = 0\) will be real for values of \(\lambda\) outside the interval: \[ \lambda \in \left(-\infty, \frac{23 - 5\sqrt{21}}{2}\right] \cup \left[\frac{23 + 5\sqrt{21}}{2}, +\infty\right) \]

To solve the equation \((x^2 - 4x + 3) + \lambda (x^2 - 6x + 8) = 0\) for the roots, we can follow these steps: ### Step 1: Rewrite the Equation Start by rewriting the given equation: \[ x^2 - 4x + 3 + \lambda (x^2 - 6x + 8) = 0 \] This can be rearranged as: ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS SEC - 1|1 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS|9 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

Let alpha, beta be two real roots of the equation cot ^ 2 x - 2 lamda cot x + 3 = 0 , lamda in R . If cot ( alpha + beta ) = (1)/(2) , then value of lamda is :

Let alpha, beta be two real roots of the equation cot ^ 2 x - 2 lamda cot x + 3 = 0 , lamda in R . If cot ( alpha + beta ) = (1)/(2) , then value of lamda is :

If alpha, beta are the roots fo the equation lamda(x^(2)-x)+x+5=0 . If lamda_(1) and lamda_(2) are two values of lamda for which the roots alpha, beta are related by (alpha)/(beta)+(beta)/(alpha)=4/5 find the value of (lamda_(1))/(lamda_(2))+(lamda_(2))/(lamda_(1))

If alpha,beta are the roots of the equation lamda(x^(2)-x)+x+5=0 and if lamda_(1) and lamda_(2) are two values of lamda obtained from (alpha)/(beta)+(beta)/(alpha)=4 , then (lamda_(1))/(lamda_(2)^(2))+(lamda_(2))/(lamda_(1)^(2)) equals.

Find the roots of the equation 3x^2+6x+3=0

How many roots of the equation 3x^4+6x^3+x^2+6x+3=0 are real ?

How many roots of the equation 3x^4+6x^3+x^2+6x+3=0 are real ?

solve the equations x^3 -3x^2 - 6x +8=0 the roots being in A.P

Find how many roots of the equations x^4+2x^2-8x+3=0.

RESONANCE ENGLISH-TEST PAPERS-MATHEMATICS
  1. Roots of the equation (x^2-4x+3)+lamda(x^2-6x+8)=0 , lamda in R will b...

    Text Solution

    |

  2. The least positive vlaue of the parameter 'a' for which there exist at...

    Text Solution

    |

  3. The locus of the midpoint of a chord of the circle x^2+y^2=4 which sub...

    Text Solution

    |

  4. If f(x)=x + tan x and f si the inverse of g, then g'(x) equals

    Text Solution

    |

  5. Tangents PA and PB are drawn to parabola y^(2)=4x from any arbitrary p...

    Text Solution

    |

  6. If lim(nrarroo) (n.2^(n))/(n(3x-4)^(n)+n.2^(n+1)+2^(n))=1/2 where "n" ...

    Text Solution

    |

  7. Eccentricity of ellipse 2(x-y+1)^(2)+3(x+y+2)^(2)=5 is

    Text Solution

    |

  8. If (tan^(-1)x)^(3)+(tan^(-1)y)^(3)=1-3tan^(-1)x.tan^(-1)y. Then which ...

    Text Solution

    |

  9. If f:RrarrR is a continuous function satisfying f(0)=1 and f(2x)-f(x)=...

    Text Solution

    |

  10. tan^(-1)(sinx)=sin^(-1)(tanx) holds true for

    Text Solution

    |

  11. The function f(x) = (x^(2) - 1)|x^(2) - 3x + 3|+cos (|x|) is not diffe...

    Text Solution

    |

  12. Consider parabola P(1)-=y=x^(2) and P(2)-=y^(2)=-8x and the line L-=lx...

    Text Solution

    |

  13. If the normals at (x(i),y(i)) i=1,2,3,4 to the rectangular hyperbola x...

    Text Solution

    |

  14. Let f(x) = x^(3) - x^(2) + x + 1 and g(x) = {{:(max f(t)",", 0 le t le...

    Text Solution

    |

  15. The sum of the roots of the equation tan^(-1)(x+3)-tan^(-1)(x-3)="sin"...

    Text Solution

    |

  16. For an ellipse having major and minor axis along x and y axes respecti...

    Text Solution

    |

  17. If f:[0,1]rarrR is defined as f(x)={(x^(3)(1-x)"sin"1/(x^(2)) 0ltxle1)...

    Text Solution

    |

  18. If f(x)=root (3)(8x^(3)+mx^(2))-nx such that lim(xrarroo)f(x)=1 then

    Text Solution

    |

  19. For the curve y=4x^3-2x^5, find all the points at which the tangents p...

    Text Solution

    |

  20. Minimum value of (sin^(-1)x)^(2)+(cos^(-1)x)^(2) is greater than

    Text Solution

    |

  21. If y + b = m(1)(x + a) and y + b = m(2)(x+a) are two tangents to the p...

    Text Solution

    |