Home
Class 12
MATHS
If f(theta)=(sintheta+cos e ctheta)^2+(c...

If `f(theta)=(sintheta+cos e ctheta)^2+(costheta+s e ctheta)^2,` then minimum value of `f(theta)` is `7` `8` `9` 4. None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the minimum value of the function \( f(\theta) = (\sin \theta + \csc \theta)^2 + (\cos \theta + \sec \theta)^2 \), we can follow these steps: ### Step 1: Expand the squares We start by expanding the squares in the function: \[ f(\theta) = (\sin \theta + \csc \theta)^2 + (\cos \theta + \sec \theta)^2 \] Expanding each term: \[ = \sin^2 \theta + 2\sin \theta \csc \theta + \csc^2 \theta + \cos^2 \theta + 2\cos \theta \sec \theta + \sec^2 \theta \] ### Step 2: Simplify the terms We know that \( \csc \theta = \frac{1}{\sin \theta} \) and \( \sec \theta = \frac{1}{\cos \theta} \). Therefore: \[ 2\sin \theta \csc \theta = 2 \quad \text{and} \quad 2\cos \theta \sec \theta = 2 \] Now substituting these back into the equation: \[ f(\theta) = \sin^2 \theta + \cos^2 \theta + 2 + \csc^2 \theta + \sec^2 \theta + 2 \] ### Step 3: Use Pythagorean identity Using the Pythagorean identity \( \sin^2 \theta + \cos^2 \theta = 1 \): \[ f(\theta) = 1 + 4 + \csc^2 \theta + \sec^2 \theta \] ### Step 4: Express \( \csc^2 \theta \) and \( \sec^2 \theta \) We know that: \[ \csc^2 \theta = 1 + \cot^2 \theta \quad \text{and} \quad \sec^2 \theta = 1 + \tan^2 \theta \] Thus: \[ f(\theta) = 5 + \cot^2 \theta + \tan^2 \theta \] ### Step 5: Use AM-GM inequality Using the AM-GM inequality on \( \cot^2 \theta \) and \( \tan^2 \theta \): \[ \cot^2 \theta + \tan^2 \theta \geq 2 \] This gives us: \[ f(\theta) \geq 5 + 2 = 7 \] ### Step 6: Find the minimum value To find the minimum value of \( f(\theta) \), we note that the minimum occurs when \( \cot^2 \theta = \tan^2 \theta = 1 \), which happens when \( \theta = \frac{\pi}{4} \) (or any angle where sine and cosine are equal). Substituting back, we find: \[ f(\theta) = 5 + 2 = 7 \] ### Conclusion Thus, the minimum value of \( f(\theta) \) is: \[ \boxed{9} \]

To find the minimum value of the function \( f(\theta) = (\sin \theta + \csc \theta)^2 + (\cos \theta + \sec \theta)^2 \), we can follow these steps: ### Step 1: Expand the squares We start by expanding the squares in the function: \[ f(\theta) = (\sin \theta + \csc \theta)^2 + (\cos \theta + \sec \theta)^2 \] ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS SEC - 1|1 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS|9 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

The minimum value of (sintheta+c o s e ctheta)^2+(costheta+sectheta)^2=

If cos theta-4sintheta=1, the sintheta+4costheta=

Prove: (cos^2theta)/(sintheta)-cos e c\ theta+sintheta=0

Prove: (sintheta)/(1-costheta)=cos e c\ theta+cottheta

Prove: (costheta)/(cos e c\ theta+1)+(costheta)/(cos e c\ theta-1)=2tantheta

If 2tan^(-1)(costheta)=tan^(-1)(2cos e ctheta),(theta!=0) , then find the value of theta

If sintheta+costheta=1 , then the value of sin2theta is

Prove the following identities: (sintheta+cos e ctheta)^2+(costheta+sectheta)^2=7+tan^2theta+cot^2theta

Prove the following identities: (sintheta+cos e ctheta)^2+(costheta+sectheta)^2=7+tan^2theta+cot^2theta

Prove: (cos e c\ theta+sintheta)(cos e c\ theta-sintheta)=cot^2theta+cos^2theta

RESONANCE ENGLISH-TEST PAPERS-MATHEMATICS
  1. If f(theta)=(sintheta+cos e ctheta)^2+(costheta+s e ctheta)^2, then mi...

    Text Solution

    |

  2. The least positive vlaue of the parameter 'a' for which there exist at...

    Text Solution

    |

  3. The locus of the midpoint of a chord of the circle x^2+y^2=4 which sub...

    Text Solution

    |

  4. If f(x)=x + tan x and f si the inverse of g, then g'(x) equals

    Text Solution

    |

  5. Tangents PA and PB are drawn to parabola y^(2)=4x from any arbitrary p...

    Text Solution

    |

  6. If lim(nrarroo) (n.2^(n))/(n(3x-4)^(n)+n.2^(n+1)+2^(n))=1/2 where "n" ...

    Text Solution

    |

  7. Eccentricity of ellipse 2(x-y+1)^(2)+3(x+y+2)^(2)=5 is

    Text Solution

    |

  8. If (tan^(-1)x)^(3)+(tan^(-1)y)^(3)=1-3tan^(-1)x.tan^(-1)y. Then which ...

    Text Solution

    |

  9. If f:RrarrR is a continuous function satisfying f(0)=1 and f(2x)-f(x)=...

    Text Solution

    |

  10. tan^(-1)(sinx)=sin^(-1)(tanx) holds true for

    Text Solution

    |

  11. The function f(x) = (x^(2) - 1)|x^(2) - 3x + 3|+cos (|x|) is not diffe...

    Text Solution

    |

  12. Consider parabola P(1)-=y=x^(2) and P(2)-=y^(2)=-8x and the line L-=lx...

    Text Solution

    |

  13. If the normals at (x(i),y(i)) i=1,2,3,4 to the rectangular hyperbola x...

    Text Solution

    |

  14. Let f(x) = x^(3) - x^(2) + x + 1 and g(x) = {{:(max f(t)",", 0 le t le...

    Text Solution

    |

  15. The sum of the roots of the equation tan^(-1)(x+3)-tan^(-1)(x-3)="sin"...

    Text Solution

    |

  16. For an ellipse having major and minor axis along x and y axes respecti...

    Text Solution

    |

  17. If f:[0,1]rarrR is defined as f(x)={(x^(3)(1-x)"sin"1/(x^(2)) 0ltxle1)...

    Text Solution

    |

  18. If f(x)=root (3)(8x^(3)+mx^(2))-nx such that lim(xrarroo)f(x)=1 then

    Text Solution

    |

  19. For the curve y=4x^3-2x^5, find all the points at which the tangents p...

    Text Solution

    |

  20. Minimum value of (sin^(-1)x)^(2)+(cos^(-1)x)^(2) is greater than

    Text Solution

    |

  21. If y + b = m(1)(x + a) and y + b = m(2)(x+a) are two tangents to the p...

    Text Solution

    |