Home
Class 12
MATHS
Let alpha and beta are roots of x^(2) - ...

Let `alpha` and `beta` are roots of `x^(2) - 17x - 6 = 0` with `alpha gt beta, if a_(n) = alpha^(n+2)+beta^(n+2)` for `n ge 5` then the value of `(a_(10)-6a_(8)-a_(9))/(a_(9))`

A

`6`

B

`16`

C

`12`

D

`8`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will follow these steps: ### Step 1: Find the roots of the quadratic equation The given quadratic equation is: \[ x^2 - 17x - 6 = 0 \] We can use the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] where \( a = 1, b = -17, c = -6 \). ### Step 2: Calculate the discriminant Calculate the discriminant: \[ D = b^2 - 4ac = (-17)^2 - 4 \cdot 1 \cdot (-6) = 289 + 24 = 313 \] ### Step 3: Find the roots Now substituting the values into the quadratic formula: \[ x = \frac{17 \pm \sqrt{313}}{2} \] Let: \[ \alpha = \frac{17 + \sqrt{313}}{2}, \quad \beta = \frac{17 - \sqrt{313}}{2} \] where \( \alpha > \beta \). ### Step 4: Define the sequence \( a_n \) The sequence is defined as: \[ a_n = \alpha^{n+2} + \beta^{n+2} \] We need to find \( \frac{a_{10} - 6a_{8} - a_{9}}{a_{9}} \). ### Step 5: Express \( a_{10}, a_{9}, a_{8} \) using the recurrence relation From the quadratic equation, we can derive a recurrence relation: \[ a_n = 17a_{n-1} + 6a_{n-2} \] Using this, we can calculate: - \( a_{10} = 17a_{9} + 6a_{8} \) - \( a_{9} = 17a_{8} + 6a_{7} \) ### Step 6: Substitute into the expression Now substituting \( a_{10} \) into the expression: \[ a_{10} - 6a_{8} - a_{9} = (17a_{9} + 6a_{8}) - 6a_{8} - a_{9} \] This simplifies to: \[ 16a_{9} \] ### Step 7: Final calculation Now we can substitute back into the expression: \[ \frac{a_{10} - 6a_{8} - a_{9}}{a_{9}} = \frac{16a_{9}}{a_{9}} = 16 \] Thus, the final answer is: \[ \boxed{16} \]

To solve the problem, we will follow these steps: ### Step 1: Find the roots of the quadratic equation The given quadratic equation is: \[ x^2 - 17x - 6 = 0 \] We can use the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] where \( a = 1, b = -17, c = -6 \). ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS SEC - 1|1 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS|9 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

Let alpha and beta be the roots x^2-6x-2=0, with alpha > beta If a_n=alpha^n-beta^n for or n >= 1 then the value of (a_10-2a_8)/(2a_9) is (a) 1 (b) 2 (c) 3 (d) 4

Let alpha and beta be the roots of x^2-6x-2=0 with alpha>beta if a_n=alpha^n-beta^n for n>=1 then the value of (a_10 - 2a_8)/(2a_9)

If alpha and beta are the roots of 2x^(2) + 5x - 4 = 0 then find the value of (alpha)/(beta) + (beta)/(alpha) .

If alpha , beta ,1 are roots of x^3 -2x^2 -5x +6=0 ( alpha gt 1) then 3 alpha + beta=

If a_(1) = 2 and a_(n) - a_(n-1) = 2n (n ge 2) , find the value of a_(1) + a_(2) + a_(3)+…+a_(20) .

If alpha and beta are the roots of x^(2)+4x+6=0 and N=1/((alpha)/(beta)+(beta)/(alpha)) then N=

If alpha, beta and 1 are the roots of x^3-2x^2-5x+6=0 , then find alpha and beta

If alpha and beta are roots of the equation x^(2)-3x+1=0 and a_(n)=alpha^(n)+beta^(n)-1 then find the value of (a_(5)-a_(1))/(a_(3)-a_(1))

Let alpha and beta be the roots of the equation x^2-6x-2=0 If a_n=alpha^n-beta^n for ngt=0 then find the value of (a_10-2a_8)/(2a_9)

If alpha, beta are roots of equation x^(2)-4x-3=0 and s_(n)=alpha^(n)+beta^(n), n in N then the value of (s_(7)-4s_(6))/s_(5) is

RESONANCE ENGLISH-TEST PAPERS-MATHEMATICS
  1. Let alpha and beta are roots of x^(2) - 17x - 6 = 0 with alpha gt beta...

    Text Solution

    |

  2. The least positive vlaue of the parameter 'a' for which there exist at...

    Text Solution

    |

  3. The locus of the midpoint of a chord of the circle x^2+y^2=4 which sub...

    Text Solution

    |

  4. If f(x)=x + tan x and f si the inverse of g, then g'(x) equals

    Text Solution

    |

  5. Tangents PA and PB are drawn to parabola y^(2)=4x from any arbitrary p...

    Text Solution

    |

  6. If lim(nrarroo) (n.2^(n))/(n(3x-4)^(n)+n.2^(n+1)+2^(n))=1/2 where "n" ...

    Text Solution

    |

  7. Eccentricity of ellipse 2(x-y+1)^(2)+3(x+y+2)^(2)=5 is

    Text Solution

    |

  8. If (tan^(-1)x)^(3)+(tan^(-1)y)^(3)=1-3tan^(-1)x.tan^(-1)y. Then which ...

    Text Solution

    |

  9. If f:RrarrR is a continuous function satisfying f(0)=1 and f(2x)-f(x)=...

    Text Solution

    |

  10. tan^(-1)(sinx)=sin^(-1)(tanx) holds true for

    Text Solution

    |

  11. The function f(x) = (x^(2) - 1)|x^(2) - 3x + 3|+cos (|x|) is not diffe...

    Text Solution

    |

  12. Consider parabola P(1)-=y=x^(2) and P(2)-=y^(2)=-8x and the line L-=lx...

    Text Solution

    |

  13. If the normals at (x(i),y(i)) i=1,2,3,4 to the rectangular hyperbola x...

    Text Solution

    |

  14. Let f(x) = x^(3) - x^(2) + x + 1 and g(x) = {{:(max f(t)",", 0 le t le...

    Text Solution

    |

  15. The sum of the roots of the equation tan^(-1)(x+3)-tan^(-1)(x-3)="sin"...

    Text Solution

    |

  16. For an ellipse having major and minor axis along x and y axes respecti...

    Text Solution

    |

  17. If f:[0,1]rarrR is defined as f(x)={(x^(3)(1-x)"sin"1/(x^(2)) 0ltxle1)...

    Text Solution

    |

  18. If f(x)=root (3)(8x^(3)+mx^(2))-nx such that lim(xrarroo)f(x)=1 then

    Text Solution

    |

  19. For the curve y=4x^3-2x^5, find all the points at which the tangents p...

    Text Solution

    |

  20. Minimum value of (sin^(-1)x)^(2)+(cos^(-1)x)^(2) is greater than

    Text Solution

    |

  21. If y + b = m(1)(x + a) and y + b = m(2)(x+a) are two tangents to the p...

    Text Solution

    |