Home
Class 12
MATHS
The value of prod(r=1)^(7)cos\ (pi r)/(1...

The value of `prod_(r=1)^(7)cos\ (pi r)/(15)` is

A

`(1)/(64)`

B

`(1)/(128)`

C

`(1)/(32)`

D

`(1)/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the product: \[ \prod_{r=1}^{7} \cos\left(\frac{\pi r}{15}\right) \] ### Step-by-Step Solution: 1. **Write out the product explicitly**: \[ \prod_{r=1}^{7} \cos\left(\frac{\pi r}{15}\right) = \cos\left(\frac{\pi}{15}\right) \cdot \cos\left(\frac{2\pi}{15}\right) \cdot \cos\left(\frac{3\pi}{15}\right) \cdot \cos\left(\frac{4\pi}{15}\right) \cdot \cos\left(\frac{5\pi}{15}\right) \cdot \cos\left(\frac{6\pi}{15}\right) \cdot \cos\left(\frac{7\pi}{15}\right) \] 2. **Simplify the angles**: Note that \(\cos\left(\frac{5\pi}{15}\right) = \cos\left(\frac{\pi}{3}\right) = \frac{1}{2}\). 3. **Use the product-to-sum identities**: We can use the identity: \[ \cos x \cdot \cos(\frac{\pi}{3} - x) \cdot \cos(\frac{\pi}{3} + x) = \frac{1}{4} \cos(3x) \] This can be applied to pairs of cosines. 4. **Pair the cosines**: We can pair the terms: \[ \cos\left(\frac{\pi}{15}\right) \cdot \cos\left(\frac{14\pi}{15}\right), \quad \cos\left(\frac{2\pi}{15}\right) \cdot \cos\left(\frac{13\pi}{15}\right), \quad \cos\left(\frac{3\pi}{15}\right) \cdot \cos\left(\frac{12\pi}{15}\right), \quad \cos\left(\frac{4\pi}{15}\right) \cdot \cos\left(\frac{11\pi}{15}\right), \quad \cos\left(\frac{5\pi}{15}\right) \cdot \cos\left(\frac{10\pi}{15}\right), \quad \cos\left(\frac{6\pi}{15}\right) \cdot \cos\left(\frac{9\pi}{15}\right), \quad \cos\left(\frac{7\pi}{15}\right) \cdot \cos\left(\frac{8\pi}{15}\right) \] 5. **Calculate the product**: Using the identity, we can calculate: \[ \prod_{r=1}^{7} \cos\left(\frac{\pi r}{15}\right) = \frac{1}{2^7} \cdot \frac{1}{2} = \frac{1}{128} \] 6. **Final result**: Thus, the value of the product is: \[ \prod_{r=1}^{7} \cos\left(\frac{\pi r}{15}\right) = \frac{1}{32} \] ### Final Answer: The value of \(\prod_{r=1}^{7} \cos\left(\frac{\pi r}{15}\right)\) is \(\frac{1}{32}\).

To solve the problem, we need to evaluate the product: \[ \prod_{r=1}^{7} \cos\left(\frac{\pi r}{15}\right) \] ### Step-by-Step Solution: ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS SEC - 1|1 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS|9 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

let z_1,z_2,z_3 and z_4 be the roots of the equation z^4 + z^3 +2=0 , then the value of prod_(r=1)^(4) (2z_r+1) is equal to :

The value of prod_(k=0)^6 sin\ ((2k+1)pi)/14= (A) 1/16 (B) 1/64 (C) 1/32 (D) none of these

The value of 1+sum_(k=0)^(14) {cos((2k+1)pi)/(15) - isin((2k+1)pi)/(15)} , is

The value of "cos"(2pi)/(15)."cos"(4pi)/(15)."cos"(8pi)/(15)."cos"(16pi)/(15) is

The value of cos[1/2cos^(-1)(cos(-(14pi)/5))]\ is/are a. cos(-(7pi)/5) b. sin(pi/(10)) c. cos((2pi)/5)\ d. -cos((3pi)/5)

The value of sum_(r=1)^oocot^(- 1)((r^2)/2+15/8) is equal to

The principal value of cos^(-1)("cos"(7pi)/6) is

The value of cos""(pi)/(11)+cos""(3pi)/(11)+cos""(5pi)/(11)+cos""(7pi)/(11)+cos""(9pi)/(11), is

Find he value of sum_(r=1)^(4n+7)\ i^r where, i=sqrt(- 1).

prod_(k=0)^3 (1+cos\ ((2k+1)pi)/8)=

RESONANCE ENGLISH-TEST PAPERS-MATHEMATICS
  1. The value of prod(r=1)^(7)cos\ (pi r)/(15) is

    Text Solution

    |

  2. The least positive vlaue of the parameter 'a' for which there exist at...

    Text Solution

    |

  3. The locus of the midpoint of a chord of the circle x^2+y^2=4 which sub...

    Text Solution

    |

  4. If f(x)=x + tan x and f si the inverse of g, then g'(x) equals

    Text Solution

    |

  5. Tangents PA and PB are drawn to parabola y^(2)=4x from any arbitrary p...

    Text Solution

    |

  6. If lim(nrarroo) (n.2^(n))/(n(3x-4)^(n)+n.2^(n+1)+2^(n))=1/2 where "n" ...

    Text Solution

    |

  7. Eccentricity of ellipse 2(x-y+1)^(2)+3(x+y+2)^(2)=5 is

    Text Solution

    |

  8. If (tan^(-1)x)^(3)+(tan^(-1)y)^(3)=1-3tan^(-1)x.tan^(-1)y. Then which ...

    Text Solution

    |

  9. If f:RrarrR is a continuous function satisfying f(0)=1 and f(2x)-f(x)=...

    Text Solution

    |

  10. tan^(-1)(sinx)=sin^(-1)(tanx) holds true for

    Text Solution

    |

  11. The function f(x) = (x^(2) - 1)|x^(2) - 3x + 3|+cos (|x|) is not diffe...

    Text Solution

    |

  12. Consider parabola P(1)-=y=x^(2) and P(2)-=y^(2)=-8x and the line L-=lx...

    Text Solution

    |

  13. If the normals at (x(i),y(i)) i=1,2,3,4 to the rectangular hyperbola x...

    Text Solution

    |

  14. Let f(x) = x^(3) - x^(2) + x + 1 and g(x) = {{:(max f(t)",", 0 le t le...

    Text Solution

    |

  15. The sum of the roots of the equation tan^(-1)(x+3)-tan^(-1)(x-3)="sin"...

    Text Solution

    |

  16. For an ellipse having major and minor axis along x and y axes respecti...

    Text Solution

    |

  17. If f:[0,1]rarrR is defined as f(x)={(x^(3)(1-x)"sin"1/(x^(2)) 0ltxle1)...

    Text Solution

    |

  18. If f(x)=root (3)(8x^(3)+mx^(2))-nx such that lim(xrarroo)f(x)=1 then

    Text Solution

    |

  19. For the curve y=4x^3-2x^5, find all the points at which the tangents p...

    Text Solution

    |

  20. Minimum value of (sin^(-1)x)^(2)+(cos^(-1)x)^(2) is greater than

    Text Solution

    |

  21. If y + b = m(1)(x + a) and y + b = m(2)(x+a) are two tangents to the p...

    Text Solution

    |