Home
Class 12
MATHS
If x, y, z are distinct positive real nu...

If `x, y, z` are distinct positive real numbers is A.P. then `(1)/(sqrt(x)+sqrt(y)), (1)/(sqrt(z)+sqrt(x)), (1)/(sqrt(y)+sqrt(z))` are in

A

`A.P.`

B

`G.P.`

C

`H.P.`

D

`A.G.P.`

Text Solution

AI Generated Solution

The correct Answer is:
To determine whether the numbers \(\frac{1}{\sqrt{x}+\sqrt{y}}, \frac{1}{\sqrt{z}+\sqrt{x}}, \frac{1}{\sqrt{y}+\sqrt{z}}\) are in arithmetic progression (A.P.), we can follow these steps: ### Step 1: Understand the condition for A.P. Three numbers \(a\), \(b\), and \(c\) are in A.P. if: \[ 2b = a + c \] ### Step 2: Assign the values Let: \[ a = \frac{1}{\sqrt{x}+\sqrt{y}}, \quad b = \frac{1}{\sqrt{z}+\sqrt{x}}, \quad c = \frac{1}{\sqrt{y}+\sqrt{z}} \] ### Step 3: Set up the A.P. condition We need to check if: \[ 2b = a + c \] This translates to: \[ 2 \cdot \frac{1}{\sqrt{z}+\sqrt{x}} = \frac{1}{\sqrt{x}+\sqrt{y}} + \frac{1}{\sqrt{y}+\sqrt{z}} \] ### Step 4: Find a common denominator The right-hand side can be simplified by finding a common denominator: \[ \frac{1}{\sqrt{x}+\sqrt{y}} + \frac{1}{\sqrt{y}+\sqrt{z}} = \frac{(\sqrt{y}+\sqrt{z}) + (\sqrt{x}+\sqrt{y})}{(\sqrt{x}+\sqrt{y})(\sqrt{y}+\sqrt{z})} \] This simplifies to: \[ \frac{\sqrt{x} + 2\sqrt{y} + \sqrt{z}}{(\sqrt{x}+\sqrt{y})(\sqrt{y}+\sqrt{z})} \] ### Step 5: Multiply through by the common denominator To eliminate the fractions, we multiply both sides by \((\sqrt{x}+\sqrt{y})(\sqrt{y}+\sqrt{z})(\sqrt{z}+\sqrt{x})\): \[ 2(\sqrt{x}+\sqrt{y})(\sqrt{y}+\sqrt{z}) = (\sqrt{y}+\sqrt{z})(\sqrt{z}+\sqrt{x}) + (\sqrt{x}+\sqrt{y})(\sqrt{y}+\sqrt{z}) \] ### Step 6: Expand and simplify Expanding both sides gives: - Left-hand side: \[ 2(\sqrt{x}\sqrt{y} + \sqrt{y}\sqrt{z} + \sqrt{x}\sqrt{z} + \sqrt{y}\sqrt{z}) = 2(\sqrt{xy} + \sqrt{yz} + \sqrt{zx}) \] - Right-hand side: \[ (\sqrt{yz} + \sqrt{zx} + \sqrt{xy} + \sqrt{yz}) + (\sqrt{xy} + \sqrt{yz} + \sqrt{zx} + \sqrt{xy}) = 2(\sqrt{xy} + \sqrt{yz} + \sqrt{zx}) \] ### Step 7: Conclusion Since both sides are equal, we conclude that: \[ \frac{1}{\sqrt{x}+\sqrt{y}}, \frac{1}{\sqrt{z}+\sqrt{x}}, \frac{1}{\sqrt{y}+\sqrt{z}} \text{ are in A.P.} \] ### Final Answer Thus, the given numbers are in A.P. ---

To determine whether the numbers \(\frac{1}{\sqrt{x}+\sqrt{y}}, \frac{1}{\sqrt{z}+\sqrt{x}}, \frac{1}{\sqrt{y}+\sqrt{z}}\) are in arithmetic progression (A.P.), we can follow these steps: ### Step 1: Understand the condition for A.P. Three numbers \(a\), \(b\), and \(c\) are in A.P. if: \[ 2b = a + c \] ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS SEC - 1|1 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS|9 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

If the number x,y,z are in H.P. , then sqrt(yz)/(sqrt(y)+sqrt(z)),sqrt(xz)/(sqrt(x)+sqrt(z)),sqrt(xy)/(sqrt(x)+sqrt(y)) are in

If x , y ,z are positive real numbers show that: sqrt(x^(-1)y)dotsqrt(y^(-1)z)dotsqrt(z^(-1)x)=1

If x , y ,z are positive real numbers show that: sqrt(x^(-1)y)dotsqrt(y^(-1)z)dotsqrt(z^(-1)x)=1

y=tan^(-1)((sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2)))

(dy)/(dx)=(sqrt(x^(2)-1))/(sqrt(y^(2)-1))

Assuming that x , y , z are positive real numbers, simplify each of the following: (i) (sqrt(x))^(-2/3)\ \ sqrt(y^4)\ -:\ sqrt(x y^(-1/2))

Assuming that x ,\ y ,\ z are positive real numbers, simplify each of the following: (sqrt(x))^(-2/3)\ sqrt(y^4)-:\ sqrt(x y^(-1/2)) (ii) root(5)(243\ x^(10)y^5z^(10))

If y=sqrt(x)+1/(sqrt(x)) , prove that 2x(dy)/(dx)=sqrt(x)-1/(sqrt(x))

Find the number of terms in the expansions of the following: (sqrt(x)+sqrt(y))^(10)+(sqrt(x)-sqrt(y))^(10)

If x, y are rational numbers such that (x+y)+(x-2y)sqrt(2)=2x-y+(x-y-1)sqrt(5) then

RESONANCE ENGLISH-TEST PAPERS-MATHEMATICS
  1. If x, y, z are distinct positive real numbers is A.P. then (1)/(sqrt(x...

    Text Solution

    |

  2. The least positive vlaue of the parameter 'a' for which there exist at...

    Text Solution

    |

  3. The locus of the midpoint of a chord of the circle x^2+y^2=4 which sub...

    Text Solution

    |

  4. If f(x)=x + tan x and f si the inverse of g, then g'(x) equals

    Text Solution

    |

  5. Tangents PA and PB are drawn to parabola y^(2)=4x from any arbitrary p...

    Text Solution

    |

  6. If lim(nrarroo) (n.2^(n))/(n(3x-4)^(n)+n.2^(n+1)+2^(n))=1/2 where "n" ...

    Text Solution

    |

  7. Eccentricity of ellipse 2(x-y+1)^(2)+3(x+y+2)^(2)=5 is

    Text Solution

    |

  8. If (tan^(-1)x)^(3)+(tan^(-1)y)^(3)=1-3tan^(-1)x.tan^(-1)y. Then which ...

    Text Solution

    |

  9. If f:RrarrR is a continuous function satisfying f(0)=1 and f(2x)-f(x)=...

    Text Solution

    |

  10. tan^(-1)(sinx)=sin^(-1)(tanx) holds true for

    Text Solution

    |

  11. The function f(x) = (x^(2) - 1)|x^(2) - 3x + 3|+cos (|x|) is not diffe...

    Text Solution

    |

  12. Consider parabola P(1)-=y=x^(2) and P(2)-=y^(2)=-8x and the line L-=lx...

    Text Solution

    |

  13. If the normals at (x(i),y(i)) i=1,2,3,4 to the rectangular hyperbola x...

    Text Solution

    |

  14. Let f(x) = x^(3) - x^(2) + x + 1 and g(x) = {{:(max f(t)",", 0 le t le...

    Text Solution

    |

  15. The sum of the roots of the equation tan^(-1)(x+3)-tan^(-1)(x-3)="sin"...

    Text Solution

    |

  16. For an ellipse having major and minor axis along x and y axes respecti...

    Text Solution

    |

  17. If f:[0,1]rarrR is defined as f(x)={(x^(3)(1-x)"sin"1/(x^(2)) 0ltxle1)...

    Text Solution

    |

  18. If f(x)=root (3)(8x^(3)+mx^(2))-nx such that lim(xrarroo)f(x)=1 then

    Text Solution

    |

  19. For the curve y=4x^3-2x^5, find all the points at which the tangents p...

    Text Solution

    |

  20. Minimum value of (sin^(-1)x)^(2)+(cos^(-1)x)^(2) is greater than

    Text Solution

    |

  21. If y + b = m(1)(x + a) and y + b = m(2)(x+a) are two tangents to the p...

    Text Solution

    |