Home
Class 12
MATHS
If f(n) = [(1)/(3)+(n)/(100)], where [.]...

If `f(n) = [(1)/(3)+(n)/(100)]`, where `[.]` denotes `G.I.F` then `sum_(n=1)^(200)f(n)` is equal to

A

`184`

B

`165`

C

`167`

D

`168`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the summation \( \sum_{n=1}^{200} f(n) \) where \( f(n) = \left\lfloor \frac{1}{3} + \frac{n}{100} \right\rfloor \). ### Step-by-Step Solution: 1. **Understanding the Function**: The function \( f(n) \) is defined as: \[ f(n) = \left\lfloor \frac{1}{3} + \frac{n}{100} \right\rfloor \] The term \( \frac{1}{3} \) is approximately \( 0.333 \). 2. **Finding the Range for \( n \)**: We need to calculate \( f(n) \) for \( n = 1, 2, \ldots, 200 \). First, we can express \( f(n) \) as: \[ f(n) = \left\lfloor 0.333 + \frac{n}{100} \right\rfloor \] This means we need to find the integer part of \( 0.333 + \frac{n}{100} \). 3. **Calculating Critical Points**: To find when \( f(n) \) changes its value, we set: \[ 0.333 + \frac{n}{100} = k \quad \text{(where \( k \) is an integer)} \] Rearranging gives: \[ n = 100(k - 0.333) \] This means \( n \) will change its integer value at \( n = 100k - 33.3 \). 4. **Finding Values of \( k \)**: We calculate \( k \) for different ranges of \( n \): - For \( n = 1 \) to \( n = 66 \): \[ f(n) = 0 \quad \text{(since \( 0.333 + \frac{n}{100} < 1 \))} \] - For \( n = 67 \) to \( n = 166 \): \[ f(n) = 1 \quad \text{(since \( 1 \leq 0.333 + \frac{n}{100} < 2 \))} \] - For \( n = 167 \) to \( n = 200 \): \[ f(n) = 2 \quad \text{(since \( 2 \leq 0.333 + \frac{n}{100} < 3 \))} \] 5. **Calculating the Summation**: Now, we calculate the contributions to the sum: - From \( n = 1 \) to \( n = 66 \): \[ \text{Contribution} = 66 \times 0 = 0 \] - From \( n = 67 \) to \( n = 166 \): \[ \text{Contribution} = 100 \times 1 = 100 \] - From \( n = 167 \) to \( n = 200 \): \[ \text{Contribution} = 34 \times 2 = 68 \] 6. **Final Sum**: Adding all contributions together: \[ \text{Total Sum} = 0 + 100 + 68 = 168 \] ### Conclusion: Thus, the value of \( \sum_{n=1}^{200} f(n) \) is \( \boxed{168} \).

To solve the problem, we need to evaluate the summation \( \sum_{n=1}^{200} f(n) \) where \( f(n) = \left\lfloor \frac{1}{3} + \frac{n}{100} \right\rfloor \). ### Step-by-Step Solution: 1. **Understanding the Function**: The function \( f(n) \) is defined as: \[ f(n) = \left\lfloor \frac{1}{3} + \frac{n}{100} \right\rfloor ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS SEC - 1|1 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS|9 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

sum_(i=1)^(n) sum_(i=1)^(n) i is equal to

Let f(n) = [1/2 + n/100] where [x] denote the integral part of x. Then the value of sum_(n=1)^100 f(n) is

For each positive integer n , let f(n+1)=n(-1)^(n+1)-2f(n) and f(1)=(2010)dot Then sum_(k=1)^(2009)f(K) is equal to 335 (b) 336 (c) 331 (d) 333

If f(n)=sum_(r=1)^(n) r^(4) , then the value of sum_(r=1)^(n) r(n-r)^(3) is equal to

Let sum_(r=1)^(n) r^(6)=f(n)," then "sum_(n=1)^(n) (2r-1)^(6) is equal to

If l=int_(0)^(1//2)(dx)/(sqrt(1-x^(2n))), n in N then (Where, [.] denotes G.I.F)

If a_(1) is the greatest value of f(x) , where f(x) =((1)/(2+[sinx])) (where [.] denotes greatest integer function) and a_(n-1)=((-1)^(n-2))/((n+1))+a_(n) (where n in N), then lim_(nrarroo) (a_(n)) is

If f(r)=1+1/2+1/3+1/ra n df(0)=0,t h e nsum_(r=1)^n(2r+1)f(r) is equal to (a) nf(n+1)-((n^2-3n+2))/2 (b) (n+1)^2f(n)-((n^2-3n+2))/2 (c) (n+1)^2f(n+1)-((n^2+3n+2))/2 (d) (n+1)^f(n+1)-((n^2-3n+2))/2

f(1)=1 and f(n)=2sum_(r=1)^(n-1) f (r) . Then sum_(n=1)^mf(n) is equal to (A) 3^m-1 (B) 3^m (C) 3^(m-1) (D)none of these

Let n in N, f(n)={(log_(8)n" if "log_(8)n " is integer"),(0" otherwise"):} , then the valud of sum_(n=1)^(2011) f(n) is :

RESONANCE ENGLISH-TEST PAPERS-MATHEMATICS
  1. If f(n) = [(1)/(3)+(n)/(100)], where [.] denotes G.I.F then sum(n=1)^(...

    Text Solution

    |

  2. The least positive vlaue of the parameter 'a' for which there exist at...

    Text Solution

    |

  3. The locus of the midpoint of a chord of the circle x^2+y^2=4 which sub...

    Text Solution

    |

  4. If f(x)=x + tan x and f si the inverse of g, then g'(x) equals

    Text Solution

    |

  5. Tangents PA and PB are drawn to parabola y^(2)=4x from any arbitrary p...

    Text Solution

    |

  6. If lim(nrarroo) (n.2^(n))/(n(3x-4)^(n)+n.2^(n+1)+2^(n))=1/2 where "n" ...

    Text Solution

    |

  7. Eccentricity of ellipse 2(x-y+1)^(2)+3(x+y+2)^(2)=5 is

    Text Solution

    |

  8. If (tan^(-1)x)^(3)+(tan^(-1)y)^(3)=1-3tan^(-1)x.tan^(-1)y. Then which ...

    Text Solution

    |

  9. If f:RrarrR is a continuous function satisfying f(0)=1 and f(2x)-f(x)=...

    Text Solution

    |

  10. tan^(-1)(sinx)=sin^(-1)(tanx) holds true for

    Text Solution

    |

  11. The function f(x) = (x^(2) - 1)|x^(2) - 3x + 3|+cos (|x|) is not diffe...

    Text Solution

    |

  12. Consider parabola P(1)-=y=x^(2) and P(2)-=y^(2)=-8x and the line L-=lx...

    Text Solution

    |

  13. If the normals at (x(i),y(i)) i=1,2,3,4 to the rectangular hyperbola x...

    Text Solution

    |

  14. Let f(x) = x^(3) - x^(2) + x + 1 and g(x) = {{:(max f(t)",", 0 le t le...

    Text Solution

    |

  15. The sum of the roots of the equation tan^(-1)(x+3)-tan^(-1)(x-3)="sin"...

    Text Solution

    |

  16. For an ellipse having major and minor axis along x and y axes respecti...

    Text Solution

    |

  17. If f:[0,1]rarrR is defined as f(x)={(x^(3)(1-x)"sin"1/(x^(2)) 0ltxle1)...

    Text Solution

    |

  18. If f(x)=root (3)(8x^(3)+mx^(2))-nx such that lim(xrarroo)f(x)=1 then

    Text Solution

    |

  19. For the curve y=4x^3-2x^5, find all the points at which the tangents p...

    Text Solution

    |

  20. Minimum value of (sin^(-1)x)^(2)+(cos^(-1)x)^(2) is greater than

    Text Solution

    |

  21. If y + b = m(1)(x + a) and y + b = m(2)(x+a) are two tangents to the p...

    Text Solution

    |