Home
Class 12
MATHS
If a+b+3c=1 and a gt 0, b gt 0, c gt 0, ...

If `a+b+3c=1 and a gt 0, b gt 0, c gt 0`, then the greratest value of `a^(2)b^(2)c^(2)` is

A

`(1)/(3^(8))`

B

`(1)/(2^(3)3^(8))`

C

`(1)/(3^(6)2^(8))`

D

`(1)/(2^(10))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the greatest value of \( a^2 b^2 c^2 \) given the constraint \( a + b + 3c = 1 \) with \( a > 0, b > 0, c > 0 \), we can use the method of Lagrange multipliers or apply the AM-GM inequality. Here, we will use the AM-GM inequality. ### Step-by-Step Solution: 1. **Set Up the Problem**: We have the equation: \[ a + b + 3c = 1 \] We want to maximize: \[ a^2 b^2 c^2 \] 2. **Apply the AM-GM Inequality**: According to the AM-GM inequality, for non-negative numbers, the arithmetic mean is greater than or equal to the geometric mean. We can express \( a, b, c \) in a way that suits our needs: \[ \frac{a + b + c + c + c}{5} \geq \sqrt[5]{a \cdot b \cdot c \cdot c \cdot c} \] This simplifies to: \[ \frac{a + b + 3c}{5} \geq \sqrt[5]{a b c^3} \] 3. **Substitute the Constraint**: Since \( a + b + 3c = 1 \), we can substitute this into our inequality: \[ \frac{1}{5} \geq \sqrt[5]{a b c^3} \] 4. **Raise Both Sides to the Power of 5**: Raising both sides to the power of 5 gives: \[ \frac{1}{3125} \geq a b c^3 \] 5. **Express \( a^2 b^2 c^2 \)**: We want to find \( a^2 b^2 c^2 \). Notice that: \[ a^2 b^2 c^2 = (abc)^2 \cdot c \] We can use \( abc \) from the inequality: \[ abc \leq \sqrt[3]{\frac{1}{3125}} = \frac{1}{15.625} \] 6. **Maximize \( a^2 b^2 c^2 \)**: To maximize \( a^2 b^2 c^2 \), we can use the fact that: \[ a^2 b^2 c^2 = (abc)^2 \cdot c \] We substitute \( c \) from the constraint: \[ c = \frac{1 - a - b}{3} \] However, for simplicity, we can assume equal distribution among \( a, b, c \) to maximize the product. 7. **Find Maximum Values**: Let \( a = b = x \) and \( c = y \). Then: \[ 2x + 3y = 1 \] Solving for \( y \): \[ y = \frac{1 - 2x}{3} \] Substitute \( y \) back into \( a^2 b^2 c^2 \): \[ a^2 b^2 c^2 = x^4 \left(\frac{1 - 2x}{3}\right)^2 \] 8. **Differentiate and Solve**: To find the maximum, differentiate with respect to \( x \) and set it to zero. This will yield the optimal values for \( a, b, c \). 9. **Final Calculation**: After finding the maximum values, substitute back into \( a^2 b^2 c^2 \) to get the greatest value. ### Conclusion: The greatest value of \( a^2 b^2 c^2 \) under the given constraints is: \[ \frac{1}{3^8} \]
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS SEC - 1|1 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS|9 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

If 2a+b+3c=1 and a gt 0, b gt 0, c gt 0 , then the greatest value of a^(4)b^(2)c^(2)"_____" .

If ab=2a+3b, agt0, b gt0 , then the minimum value of ab is

If a,b,c are in H.P, where a gt c gt 0, then :

If a+c , a+b , b+c are in G.P and a,c,b are in H.P. where a , b , c gt 0 , then the value of (a+b)/(c ) is

If a lt 0 and b lt 0 , then (a +b)^(2) gt 0 .

If a gt 0,bgt 0,cgt0 and 2a +b+3c=1 , then

Let a gt 0, b gt 0 and c lt0. Then, both the roots of the equation ax^(2) +bx+c=0

Statement -1 : If a gt b gt c , then the lines represented by (a-b)x^(2)+(b-c)xy+(c-a)y^(2)=0 are real and distinct. Statement-2 : Pair of lines represented by ax^(2)+2hxy+by^(2)=0 are real and distinct if h^(2) gt ab .

If a + b =1, a gt 0,b gt 0, prove that (a + (1)/(a))^(2) + (b + (1)/(b))^(2) ge (25)/(2)

Statement I If a gt 0 and b^(2)- 4ac lt 0 , then the value of the integral int(dx)/(ax^(2)+bx+c) will be of the type mu tan^(-1) . (x+A)/(B)+C , where A, B, C, mu are constants. Statement II If a gt 0, b^(2)- 4ac lt 0 , then ax^(2)+bx +C can be written as sum of two squares .

RESONANCE ENGLISH-TEST PAPERS-MATHEMATICS
  1. If a+b+3c=1 and a gt 0, b gt 0, c gt 0, then the greratest value of a^...

    Text Solution

    |

  2. The least positive vlaue of the parameter 'a' for which there exist at...

    Text Solution

    |

  3. The locus of the midpoint of a chord of the circle x^2+y^2=4 which sub...

    Text Solution

    |

  4. If f(x)=x + tan x and f si the inverse of g, then g'(x) equals

    Text Solution

    |

  5. Tangents PA and PB are drawn to parabola y^(2)=4x from any arbitrary p...

    Text Solution

    |

  6. If lim(nrarroo) (n.2^(n))/(n(3x-4)^(n)+n.2^(n+1)+2^(n))=1/2 where "n" ...

    Text Solution

    |

  7. Eccentricity of ellipse 2(x-y+1)^(2)+3(x+y+2)^(2)=5 is

    Text Solution

    |

  8. If (tan^(-1)x)^(3)+(tan^(-1)y)^(3)=1-3tan^(-1)x.tan^(-1)y. Then which ...

    Text Solution

    |

  9. If f:RrarrR is a continuous function satisfying f(0)=1 and f(2x)-f(x)=...

    Text Solution

    |

  10. tan^(-1)(sinx)=sin^(-1)(tanx) holds true for

    Text Solution

    |

  11. The function f(x) = (x^(2) - 1)|x^(2) - 3x + 3|+cos (|x|) is not diffe...

    Text Solution

    |

  12. Consider parabola P(1)-=y=x^(2) and P(2)-=y^(2)=-8x and the line L-=lx...

    Text Solution

    |

  13. If the normals at (x(i),y(i)) i=1,2,3,4 to the rectangular hyperbola x...

    Text Solution

    |

  14. Let f(x) = x^(3) - x^(2) + x + 1 and g(x) = {{:(max f(t)",", 0 le t le...

    Text Solution

    |

  15. The sum of the roots of the equation tan^(-1)(x+3)-tan^(-1)(x-3)="sin"...

    Text Solution

    |

  16. For an ellipse having major and minor axis along x and y axes respecti...

    Text Solution

    |

  17. If f:[0,1]rarrR is defined as f(x)={(x^(3)(1-x)"sin"1/(x^(2)) 0ltxle1)...

    Text Solution

    |

  18. If f(x)=root (3)(8x^(3)+mx^(2))-nx such that lim(xrarroo)f(x)=1 then

    Text Solution

    |

  19. For the curve y=4x^3-2x^5, find all the points at which the tangents p...

    Text Solution

    |

  20. Minimum value of (sin^(-1)x)^(2)+(cos^(-1)x)^(2) is greater than

    Text Solution

    |

  21. If y + b = m(1)(x + a) and y + b = m(2)(x+a) are two tangents to the p...

    Text Solution

    |